Spelling suggestions: "subject:"bovidae outbreak"" "subject:"bovide outbreak""
1 |
A State-of-the-Art Artificial intelligence model for Infectious Disease Outbreak Prediction. Infectious disease outbreak have been predicted in England and Wales using Artificial Intelligence, Machine learning, and Fast Fourier Transform for COVID-19.Fayad, Moataz B.M. January 2023 (has links)
The pandemic produced by the COVID-19 virus has resulted in an estimated 6.4 million deaths worldwide and a rise in unemployment rates, notably in the UK. Healthcare monitoring systems encounter several obstacles when regulating and anticipating epidemics. The study aims to present the AF-HIDOP model, an artificial neural network Fast Fourier Transform hybrid technique, for the early identification and prediction of the risk of Covid-19 spreading within a specific time and region. The model consists of the following five stages: 1) Data collection and preprocessing from reliable sources; 2) Optimal machine learning algorithm selection, with the Random Forest tree (RF) classifier achieving 94.4% accuracy; 3) Dimensionality reduction utilising principal components analysis (PCA) to optimise the impact of the data volume; 4) Predicting case numbers utilising an artificial neural network model, with 52% accuracy; 5) Enhancing accuracy by incorporating Fast Fourier Transform (FFT) feature extraction and ANN, resulting in 91% accuracy for multi-level spread risk classification. The AF-HIDOP model provides prediction accuracy ranging from moderate to high, addressing issues in healthcare-based datasets and costs of computing, and may have potential uses in monitoring and managing infectious disease epidemics.
|
Page generated in 0.0259 seconds