• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of legume plant density and mixed culture on symbiotic N2 fixation in five cowpea (Vigna unguiculata L. Walp.) genotypes in South Africa

Makoi, JHJR, Chimphango, SBM, Dakora, FD January 2009 (has links)
Abstract A field experiment involving two plant densities (83,333 and 166,666 plants per hectare), two cropping systems (monoculture and mixed culture) and five cowpea (Vigna unguiculata L. Walp.) genotypes (3 farmer-selected varieties: Bensogla, Sanzie and Omondaw, and 2 breeder-improved cultivars: ITH98-46 and TVuI509) was conducted for two years in 2005 and 2006 at Nietvoorbij (33°54S, 18°14E), Stellenbosch, South Africa, to evaluate the effect of these treatments on the growth and symbiotic performance of cowpea. The results showed that, of the five cowpea genotypes, plant growth and N2 fixation were significantly greater in the three farmer-selected varieties (Sanzie, Bensogla and Omondaw) relative to the two improved cultivars (ITH98-46 and TVuI509). Furthermore, plant growth and symbiotic performance (measured as tissue N concentration, plant N content, 15N natural abundance and N-fixed) were significantly (P:50.05) decreased by both high plant density and mixed culture (intercropping). However, the %Ndfa values were significantly (P:S0.05) increased by both high plant density and mixed culture compared to low plant density or monoculture (or monocropping). Whether under low or high plant density, the cv. Sanzie was found to accumulate significantly greater total N per plant in both 2005 and 2006, followed by the other two farmer varieties relative to the improved cultivars. Similarly, the actual amount ofN-fixed was much greater in cv. Sanzie, followed by the other farmer varieties, under both low and high plant density. The data also showed better growth and greater symbiotic N yield in cowpea plants cultivated in monoculture (or low plant density) relative to those in mixed culture (or high plant density). Our data suggest that optimising legume density in cropping systems could potentially increase N2 fixation in cowpea, and significantly contribute to the N economy of agricultural soils in Africa.
2

Effect of legume plant density and mixed culture on symbiotic N2 fixation in five cowpea (Vigna unguiculata L. Walp.) genotypes in South Africa

Makoi, JHJR, Chimphango, SBM, Dakora, FD 01 January 2009 (has links)
Abstract A field experiment involving two plant densities (83,333 and 166,666 plants per hectare), two cropping systems (monoculture and mixed culture) and five cowpea (Vigna unguiculata L. Walp.) genotypes (3 farmer-selected varieties: Bensogla, Sanzie and Omondaw, and 2 breeder-improved cultivars: ITH98-46 and TVuI509) was conducted for two years in 2005 and 2006 at Nietvoorbij (33°54S, 18°14E), Stellenbosch, South Africa, to evaluate the effect of these treatments on the growth and symbiotic performance of cowpea. The results showed that, of the five cowpea genotypes, plant growth and N2 fixation were significantly greater in the three farmer-selected varieties (Sanzie, Bensogla and Omondaw) relative to the two improved cultivars (ITH98-46 and TVuI509). Furthermore, plant growth and symbiotic performance (measured as tissue N concentration, plant N content, 15N natural abundance and N-fixed) were significantly (P:50.05) decreased by both high plant density and mixed culture (intercropping). However, the %Ndfa values were significantly (P:S0.05) increased by both high plant density and mixed culture compared to low plant density or monoculture (or monocropping). Whether under low or high plant density, the cv. Sanzie was found to accumulate significantly greater total N per plant in both 2005 and 2006, followed by the other two farmer varieties relative to the improved cultivars. Similarly, the actual amount ofN-fixed was much greater in cv. Sanzie, followed by the other farmer varieties, under both low and high plant density. The data also showed better growth and greater symbiotic N yield in cowpea plants cultivated in monoculture (or low plant density) relative to those in mixed culture (or high plant density). Our data suggest that optimising legume density in cropping systems could potentially increase N2 fixation in cowpea, and significantly contribute to the N economy of agricultural soils in Africa.
3

Measurement of N, fixation in 30 cowpea (Vigna unguiculata L. Walp.) genotypes under field conditions in Ghana, using the 15N natural abundance technique

Belane, AK, Dakora, FD 01 January 2009 (has links)
Abstract In 2005 and 2006, 30 and 15 cowpea genotypes were respectively evaluated for plant growth and symbiotic performance at Manga in Northern Ghana, in order to identify Nz-fixing potential of these cowpea genotypes as source of N for cropping systems. The results showed differences in biomass production by the 30 or 15 cowpea genotypes. In 2005, cultivars Fahari, Mchanganyiko, IT97K-499-39, IT93K-2045-29 and IT84S-2246 produced the most shoot biomass, while Apagbaala, Brown Eye, ITH98-46, Vita 7 and Iron Grey produced the least. Of the 15 genotypes tested in 2006, cv. TVu1l424 produced the largest amount of biomass, and ITH98-46, the least. Isotopic analysis of 15N in plant parts also revealed significant differences in 1)15N of the cowpea genotypes studied. As a result, the percent N derived from fixation (% Ndfa) also differed among the cowpea genotypes tested in 2005, with only 5 out of the 30 cultivars obtaining over 50% of their N from symbiotic fixation. Whether expressed as mg Nplant' or kg N.ha-I , the levels of Nz fixation by the cowpea genotypes varied considerably during 2005 and 2006, with values ofN contribution ranging from 14.1 kg N.ha-1 by cv. TVul509 to 157.0 kg N.ha-1by IT84S-2246 in 2005. The amounts ofN-fixed in 2006 ranged from 16.7 kg N.ha-1 by cv. ITH98-46 to 171.2 kg N.ha-1 by TVu11424, clearly indicating genotypic differences in symbiotic N yield. Re-evaluating 15 out of the 30 cowpea genotypes for Nz fixation in 2006, revealed higher % Ndfa values (>50%) in all (15 cowpea genotypes) relative to those tested in 2005, indicating greater dependence on Nz fixation for their N nutrition even though, the actual amounts of fixed-N were lower in 2006. This was due, in part, to reduced plant biomass as a result of very late sampling in 2006, close to physiological maturity (72 DAP in 2006 vs. 46 DAP in 2005) when considerable leaf matter was lost. The amount ofNfixed in 2006 can therefore be considered as being under-estimated.
4

Response of selected cowpea lines to low soil phosphorus and moisture stress conditions at Ukulima Farm in Limpopo Province

Thosago, Setshele Standford January 2015 (has links)
Thesis (M. Sc.(Agronomy)) -- University of Limpopo, 2015 / Cowpea (Vigna unguiculata L. Walp) is an important grain legume grown in many parts of the world mostly by smallholder (SH) farmers. Low soil phosphorus (P) and drought stress are major constraints to legume production and threaten food security. Root architecture is a spatial configuration of the root system which is influenced by moisture status and P uptake. A field experiment was conducted at Ukulima farm near Modimolle in Waterberg district during 2012/13 summer growing season. The treatments comprised of two levels each for soil P (low and high) and moisture status (water stress and well-watered); and eight cowpea genotypes (Tvu 4632, Tvu 6365, Tvu 9848, Tvu 15445, Tvu 16408, Tvu 15143, Oloyin and IT00K-1217). The low P level implied the available P in the soil measured in situ, which was less than 8 mg kg-1 while the high P level entailed fertilization at the rate of 40 kg P ha-1 application to achieve approximately 35 mg P kg-1 of soil . The root traits measured included angle of adventitious and basal roots, number of basal roots, tap root diameters at 5, 10, 15 and 20 cm soil depths; lateral branching densities at depth 5,10 and 15 cm, nodule score, deep score, shallowness score, 3rd order branching density, and 1.5 branching densities at 5 and 10 cm depth. Plant parameters measured were plant height, number of pods per plant, number of seeds per pod, length of the pods, unshelled weight, shelled weight and number of primary and secondary branches. Photosynthetic parameters measured were photosynthetic rate, intercellular CO2 concentration, water conductance, transpiration rate, vapour pressure deficits, sample cell CO2, sample cell H2O and relative humidity in the cell. All treatment factors were combined as split-split plot arrangement fitted into randomized complete block design; with four replicates. Results indicate that the lateral root branching density at 5 and 10 cm differed significantly (P≤0.05) across cowpea genotypes. Genotype showed significant effect on taproot diameter at 10 cm. Moisture status and P level exerted significant effect on cowpea genotypes 15 cm. There were significant differences (P≤0.05) for lateral root branching density observed at 5 and 10 cm depth in P rates x genotype interaction. Statistical analysis showed that P levels and cowpea genotypes had significant effects (P≤0.05) on mean plant height, biomass and highly significantly effects (P≤0.01) on number of branches, days to physiological maturity and mean pod length. The interaction between cowpea genotype and moisture stress condition significantly (P≤0.05) affected hundred (100) seed weight. Cowpea genotype Tvu16408 obtained highest grain yield of 3240 kg ha-1 and lowest was by IT00K1217 which obtained grain yield of 1256 kg ha-1. Results showed that photosynthetic rate, water conductance, transpiration rate, sample cell CO2, sample cell H2O, relative humidity in the cell, intercellular CO2 and vapour pressure deficit differed significantly (P≤0.05) across cowpea genotypes. Soil moisture condition and cowpea genotype exerted significant (P≤0.01) effect on photosynthetic rate, water conductance, transpiration rate, sample cell CO2, sample cell H2O and relative humidity in the cell. Variation in P levels had no significant effect on the measured photosynthetic parameters. Oloyin genotype had the highest photosynthetic rate followed by Tvu 4632 while cowpea genotype Tvu 9848 had the least photosynthetic rate. Interaction of moisture stress and cowpea genotype had a significant effect on intercellular CO2 concentration. Water stress reduced the intercellular CO2 concentration of Oloyin, Tvu 6365 and 4632 but resulted in a significant increase in intercellular CO2 concentration in Tvu 9848 genotype. Results showed that variation in soil P level exerted a significant (P≤0.05) effect on grain tissue P content and uptake, and a highly significant (P≤0.01) difference in P content across the various cowpea genotypes. Moisture stress exerted a significant (P≤0.05) difference on P uptake. The results showed that P levels and cowpea genotype variation exerted significant (P≤0.05) effects on P content, P uptake and nitrogen (N) uptake. Moisture status and cowpea genotype variation exerted significant (P≤0.05) effects on total N and N uptake. Cowpea genotype Tvu 9848 obtained more total N content (4.37%), while the lowest total N content was obtained by cowpea genotype Tvu 15445 with 3035 mg kg-1. The interaction between cowpea genotype and moisture status exerted a significant (P≤0.05) effect on N and P uptake of immature green pods harvested. There is a need to conduct more studies to identify cowpea genotypes, their root architecture and agronomic measures that can do well under xvii drought stress and low soil P conditions. Research needs to be conducted to enhance cowpea productivity under both low soil P and drought stress. Keywords: cowpea genotypes; moisture stress; phosphorus fertilisation; root traits

Page generated in 0.0394 seconds