• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Navigation by male crab spiders Misumenoides formosipes (Araneae: Thomisidae) : use of floral cues to locate foraging females

Stellwag, Leonard M. January 2007 (has links)
The North American crab spider Misumenoides formosipes is a sit-and-wait predator of insect pollinators. Females are relatively sedentary and adult males must search for females within a heterogeneous habitat. Females are receptive to mating immediately after their adult molt and a first sperm priority pattern places a premium on male ability to locate females quickly. It is unknown what cues males use to navigate during searches for females. We report here on the male-biased operational sex ratio, the distances traveled and the possible cues utilized by moving males. Males in field trials moved towards inflorescences when both visual and chemical cues were available, but were less likely to do so when chemical cues were eliminated. Males in lab trials chose an inflorescence over leaf substrates even in the absence of visual cues. These findings support the hypothesis that these spiders utilize floral chemistry as an environmental cue to optimize mate searches. / Department of Biology
2

Extraction of potential chemical attractants from Rudbeckia hirta inflorescences

Judkins, Rojenia N. January 2009 (has links)
We aimed to identify the volatile compounds in inflorescences of Rudbeckia hirta that may be responsible for the olfactory attraction of the crab spider Misumenoides formosipes to this plant. Our approach was to use ultrasonic extraction, separate the extract into fractions using flash chromatography with different solvent systems, and test the attraction of the male spiders to the pooled fractions using a y-tube olfactometer. Ultrasonic extraction is carried out using a mixture of 1:2 hexane/diethyl ether with 10 g of inflorescences for 30 minutes. Bioassay results indicated that male spiders chose the inflorescences, bulk ultrasonic extract, and the pooled 100% dichloromethane fractions over controls. Nuclear magnetic resonance experiments and infrared spectroscopy experiments were carried out on the 100% dichloromethane fractions and these experiments indicated that a long chain hydrocarbon is the main component in the 100% dichloromethane fractions / Chromatographic method and bioassay development method -- M. formosipes olfactory response to R. hirta -- Separation and identification of the possible attractants in the 100% dichloromethane fractions. / Department of Chemistry
3

Studies involving potential chemical attractants from Rudbeckia hirta inflorescences

Simpson, Ashley N. 24 July 2010 (has links)
Our research involves the isolation and identification of the possible chemical compounds in black-eyed Susans that may be responsible for the olfactory attraction of the crab spider Misumenoides formosipes to the inflorescences of these plants. In olfactometric bioassays, 80% of 30 male spiders moved towards olfactory-only cues from R. hirta inflorescences over a water control (P = 0.0014). The bulk extract was separated using flash column chromatography (silica column) with a series of solvents. Spiders in olfactometer bioassays showed a significant preference for the fractions collected using 100% dichloromethane over the solvent-only control (P=0.039). The 100% dichloromethane pooled fractions were separated using solid phase extraction (SPE). Three compounds were isolated and identified using TLC, infrared and NMR spectroscopy. Two compounds were identified as contaminants, di(2-ethylhexyl) phthalate and erucamide, found in the flash column chromatography apparatus and SPE apparatus, respectively. A long-chain crystalline hydrocarbon wax was extracted from R. hirta inflorescences. Research shows that several insects use the lipids of the wax layer, specifically various long-chain alkanes and alcohols, as cues in host plant selection or as kairomones, chemical cues used in communication from one organism to another [3]. It also shows that the waxes can act as absorbents or release agents for biologically active material. Thus, the long-chain hydrocarbon wax interacting with the volatile components could play a major role in attracting the male crab spiders to the R. hirta inflorescences / Introduction and background -- Olfactory bioassay studies of M. formosipes -- Chromatographic separation of components in the 100% dichloromethane fractions -- Identification of the possible attractants in the 100% dichloromethane fractions using spectroscopic methods. / Department of Chemistry

Page generated in 0.0814 seconds