• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resolution Enhancement of Ultrasonic Signals using Autoregressive Spectral Extrapolation

Shakibi, Babak 25 August 2011 (has links)
Time of Flight Diffraction (TOFD) is one of the most accurate ultrasonic methods for crack detection and sizing in pipeline girth welds. Its performance, however, is limited by the temporal resolution of the signal. In this thesis, we develop a signal processing method based on autoregressive spectral extrapolation to improve the temporal resolution of ultrasonic signals. The original method cannot be used in industrial applications since its performance is highly dependent on selection of a number of free parameters. This method is modified by optimizing its various steps and limiting the number of free parameters, and an automated algorithm for selection of values for the remaining free parameters is proposed based on the analysis of a large set of synthetic signals. The performance of the final algorithm is evaluated using experimental data; it is shown that the uncertainty in crack sizing accuracy can be reduced by as much as 80%. Furthermore, the proposed method is shown to be capable of resolving overlapping echoes; therefore, smaller cracks that have echoes that are not clearly resolved in the raw signal, can be detected and sized in the enhanced signal.
2

Resolution Enhancement of Ultrasonic Signals using Autoregressive Spectral Extrapolation

Shakibi, Babak 25 August 2011 (has links)
Time of Flight Diffraction (TOFD) is one of the most accurate ultrasonic methods for crack detection and sizing in pipeline girth welds. Its performance, however, is limited by the temporal resolution of the signal. In this thesis, we develop a signal processing method based on autoregressive spectral extrapolation to improve the temporal resolution of ultrasonic signals. The original method cannot be used in industrial applications since its performance is highly dependent on selection of a number of free parameters. This method is modified by optimizing its various steps and limiting the number of free parameters, and an automated algorithm for selection of values for the remaining free parameters is proposed based on the analysis of a large set of synthetic signals. The performance of the final algorithm is evaluated using experimental data; it is shown that the uncertainty in crack sizing accuracy can be reduced by as much as 80%. Furthermore, the proposed method is shown to be capable of resolving overlapping echoes; therefore, smaller cracks that have echoes that are not clearly resolved in the raw signal, can be detected and sized in the enhanced signal.

Page generated in 0.0381 seconds