• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 35
  • 20
  • 18
  • 15
  • 6
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 280
  • 280
  • 179
  • 79
  • 56
  • 46
  • 43
  • 37
  • 34
  • 34
  • 31
  • 31
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Processing and characterisation of mullite based ceramics

Kara, Ferhat January 1994 (has links)
No description available.
22

A study of cumulative fatigue and creep-fatigue damage in Type 316 steel

Connaughton, M. D. January 1988 (has links)
No description available.
23

The influence of multiple axis fatigue loading on structural integrity of offshore tubular joints

Mshana, Yassin Uledi Hatibu January 1993 (has links)
No description available.
24

Closure assessment and overload transient behaviour in damage tolerant airframe materials

Xu, Yigeng January 2001 (has links)
No description available.
25

The study of long term fracture properties in tough polyethylene

Pandya, Kedar Chaitanya January 2000 (has links)
No description available.
26

Numerical analysis of a thick cylinder in the presence of cracked crossbore and axial holes

Endersby, Stephen January 1997 (has links)
No description available.
27

Monitoring of crack growth and crack mouth opening displacement in compact tension specimens at high temperatures : Development and implementation of the Direct Current Potential Drop (DCPD) method / Övervakning av spricktillväxt samt spricköppning av kompakta spänningsprover vid höga temperaturer

Malmqvist, Philip January 2016 (has links)
The mechanical engineering department at the University of Idaho is conducting a project with the purpose of developing a complete system for investigating creep-, creep-fatigue- and fatigue properties of metallic materials at elevated temperatures up to 650 ˚C with Compact Tension (CT) specimens. Considerable efforts have been made to study and understand these phenomena, although numerous problems still exist. It is important to explore more extensively the complicated phenomena of creep, fatigue and of creep-fatigue interactions. The Direct Current Potential Drop (DCPD) method is a common method used to investigate, for example, the initiation of cracks, crack growth rates and to monitor crack growth. The technique utilizes the fact that the electrical resistance of a CT specimen changes with crack growth. By applying a constant current over the specimen and measuring the resulting voltage over the crack, the crack length can be related to the voltage, and the difference in crack length with difference in voltage. Standards from the American Society for Testing of Materials (ASTM) were used as guidance when designing the DCPD system and CT specimen. The development and implementation processes were divided into an analytical and an experimental stage. The final product consisted of a high temperature extensometer, to measure crack mouth opening displacement (CMOD), and a DCPD system, to measure crack growth, controlled by separate control units. The DCPD system consisted of a DC supply and a nano voltmeter along with Constantan wire and NiCr60 wire respectively, that were mechanically fastened. The DCPD system delivered overall satisfying results and was able to generate sufficient data to produce a crack growth curve, da/dN vs. ΔK. Although, by taking advantage of resistance welding equipment to attach the DCPD wires, along with implementing one shared control unit for the DCPD system and the extensometer, more accurate and accessible measurements and correlations could be extracted. / Mechanical engineering avdelningen på University of Idaho genomför just nu ett utvecklingsprojekt med syftet att utveckla ett komplett system för undersökning av krypnings, krypnings-utmattnings- samt utmattnings- egenskaper av metalliska material vid höga temperaturer upp till 650 ˚C med hjälp av kompakta spänningsprovstavar (CT specimens). Betydande ansträngningar har gjorts för att undersöka och förstå dessa fenomen, men flera problem kvarstår. Det är viktigt att djupare undersöka kopplingen mellan krypnings- och utmattningsegenskaper. Direct Current Potential Drop (DCPD) metoden är en vanlig metod vilken används för att undersöka, exempelvis, sprickinitiering, spricktillväxthastigheter och spricktillväxt. Tekniken utnyttjar faktumet att den elektriska resistansen i en provstav ändras med spricktillväxt. Genom att föra en konstant ström genom provstaven och sedan mäta den resulterande spänningen över sprickan, kan spricklängden relateras till uppmätt spänning. På samma sätt kan spricktillväxt relateras till spänningsförändringar. Standarder från American Society for Testing of Materials (ASTM) användes för att designa ett DCPD system samt en CT provstav. Utvecklings- och implementeringsprocessen var uppdelad i en analytisk och en experimentell del. Den slutgiltiga produkten bestod av en extensometer, för mätning av spricköppning vid höga temperaturer, och ett DCPD system, för mätning av spricktillväxt vid höga temperaturer, vilka kontrollerades av separata kontrollenheter. DCPD systemet bestod av en strömkälla och en nanovoltmeter tillsammans med Constantan kablar respektive NiCr60 kablar, vilka fastsättes mekaniskt. DCPD systemet levererade generellt sett tillfredställande resultat och hade kapacitet att generera tillräckligt precisa data för att producera en spricktillväxtkurva, da/dN vs. ΔK. Däremot, genom att utnyttja en resistanssvets, för att fastsätta DCPD-kablarna, tillsammans med en gemensam kontrollenhet för extensometern och DCPD systemet, kan det tänkas att bättre och mer tillgängliga resultat kunde åstadkommas.
28

Studies of and modelling of the fracture behaviour of composite materials

Griffin, David January 1998 (has links)
No description available.
29

A fast-track method for fatigue crack growth prediction with a cohesive zone model

Dahlan, Hendery January 2013 (has links)
An alternative point of view with regard to understanding the mechanism of energy transfer involved to create new surface is considered in this study. A combination of transport equation and cohesive element is presented. A practical demonstration in 1-D is presented to simulate the mechanism of energy transfer in a damage zone model for both elastic and elastic-plastic materials. The combination of transport and cohesion element shows the extent elastic energy plays to supply the energy required for crack growth. Meanwhile, plastic energy dissipation for an elastic-plastic material is shown to be well described by the transport approach. The cohesive zone model is one of many alternative approaches used to simulate fatigue crack growth. The model incorporates a relationship between cohesive traction and separation in the zone ahead of a crack tip. The model introduces irreversibility into the constitutive relationships by means of damage accumulation with cyclic loading. The traction-separation relationship underpinning the cohesive zone model is not required to follow a predetermined path, but is dependent on irreversibility introduced by decreasing a critical cohesive traction parameter. The approach can simulate fatigue crack growth without the need for re-meshing and caters for constant amplitude loading and single overloading. This study shows the retardation phenomenon occurring in elastic plastic-materials due to single overloading. Plastic materials can generate a significant plastic zone at the crack which is shown to be well captured by the cohesive zone model approach. In a cohesive zone model, fatigue crack growth involves the dissipation of separation energy released per cycle. The crack advance is defined by the total energy separation dissipated term equal to the critical energy release rate or toughness. The effect of varying toughness with the assumption that the critical traction remains fixed is investigated here. This study reveals that varying toughness does not significantly affect the stress distribution along the crack path. However, plastic energy dissipation can significantly increase with toughness. A new methodology called the fast-track method is introduced to accelerate the simulation of fatigue crack growth. The method adopts an artificial material toughness. The basic idea of the proposed method is to decrease the number of cycle for computation by reducing the toughness. By establishing a functional relationship between the number of cycles and variable artificial toughness, the real number of cycles can be predicted. The proposed method is shown to be an excellent agreement with the numerical results for both constant amplitude loading and single overloading. A new approach to predict fatigue crack growth curves is presented. The approach combines the fast-track method and an extrapolation methodology. The basic concept is to establish a function relationship using the curve fitting technique applied to data obtained from preliminary calculation of fast-track methodology. It is shown in this thesis that the new methodology provides excellent agreement with an empirical model. The methodology is limited to constant amplitude loading and small scale yielding conditions. It is shown in the thesis that fatigue crack growth curves for variable amplitude loading can be predicted by using the data set for fatigue crack growth rate for constant amplitude loading. A retardation parameter can be deduced from the number of cycles delayed using the cohesive zone model. The retardation parameter is established by performing calculation for different toughness. This methodology is shown to give good agreement with results from empirical models for different variable amplitude loading conditions.
30

Adhesive bonding of thermoplastic fibre-composites

Kodokian, George-Kevork January 1989 (has links)
No description available.

Page generated in 0.0369 seconds