• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rapid crack propagation in polymer multi-layer systems

Ivankovic, Alojz January 1991 (has links)
No description available.
2

Application of thermomechanical processing for the improvement of boundary configurations in commercially pure nickel

Li, Qiangyong 15 January 2009 (has links)
The effect of thermo-mechanical processing by deformation and annealing on the grain boundary configuration of commercially pure Ni-200 is reported in this thesis. Ni-200 is unalloyed, thus avoiding the complex effects associated with alloying elements on the formation and development of different types of grain boundaries. One step strain-recovery with strain levels in the range of 3% to 7.5% (with 1.5% intervals) and annealing temperatures in the range of 800ºC to 1000ºC (with 100ºC intervals) were used in processing. The effects of parameters such as strain level, annealing temperature, annealing time and grain growth on grain boundary configurations were studied. Using Orientation Image Microscopy (OIM) it was found that the Fsp (fraction of special grain boundaries) value of strained samples annealed in the range of 800ºC to 1000ºC began to increase after a critical length of time, after which the Fsp value increased quickly and becoming a maximum in 2~4 minutes. The length of the critical annealing time for the increase of Fsp was shorter in the material with the higher levels of strain at a constant annealing temperature. Also the critical annealing time was shorter when annealed at higher temperatures under a fixed level of strain. The Fsp value increased to 80% from an as received value of about 30% in the samples with varying strain levels. However, the Fsp values only increased from 30% to 45% in the material without strain. Due to grain boundary migration, the Fsp values increased with grain size and became a maximum during the heat treatment of the strained material. In the material without strain however even when grain growth occurred, limited improvement in Fsp values occurred showing that contribution of strain is very important to the formation of special boundaries. By varying the strain levels, annealing temperatures and times, material with high Fsp values in a wide range of grain size can be obtained. Under the present processing conditions used however, multi-cycle was not helpful to the improvement of Fsp. TEM observations indicated dislocation tangles occurred near the grain boundary of the 1x6% strained samples. These dislocation tangles decreased with time at 800˚C and were reduced considerably after 20 minutes. Thermodynamic and kinetic models were used in the calculations of twin density-grain size relationships. The results indicated that the contribution of strain is equivalent to the increase of grain boundary energy, which provided an extra driving force and improved probability of twin embryo formation. / February 2009
3

Application of thermomechanical processing for the improvement of boundary configurations in commercially pure nickel

Li, Qiangyong 15 January 2009 (has links)
The effect of thermo-mechanical processing by deformation and annealing on the grain boundary configuration of commercially pure Ni-200 is reported in this thesis. Ni-200 is unalloyed, thus avoiding the complex effects associated with alloying elements on the formation and development of different types of grain boundaries. One step strain-recovery with strain levels in the range of 3% to 7.5% (with 1.5% intervals) and annealing temperatures in the range of 800ºC to 1000ºC (with 100ºC intervals) were used in processing. The effects of parameters such as strain level, annealing temperature, annealing time and grain growth on grain boundary configurations were studied. Using Orientation Image Microscopy (OIM) it was found that the Fsp (fraction of special grain boundaries) value of strained samples annealed in the range of 800ºC to 1000ºC began to increase after a critical length of time, after which the Fsp value increased quickly and becoming a maximum in 2~4 minutes. The length of the critical annealing time for the increase of Fsp was shorter in the material with the higher levels of strain at a constant annealing temperature. Also the critical annealing time was shorter when annealed at higher temperatures under a fixed level of strain. The Fsp value increased to 80% from an as received value of about 30% in the samples with varying strain levels. However, the Fsp values only increased from 30% to 45% in the material without strain. Due to grain boundary migration, the Fsp values increased with grain size and became a maximum during the heat treatment of the strained material. In the material without strain however even when grain growth occurred, limited improvement in Fsp values occurred showing that contribution of strain is very important to the formation of special boundaries. By varying the strain levels, annealing temperatures and times, material with high Fsp values in a wide range of grain size can be obtained. Under the present processing conditions used however, multi-cycle was not helpful to the improvement of Fsp. TEM observations indicated dislocation tangles occurred near the grain boundary of the 1x6% strained samples. These dislocation tangles decreased with time at 800˚C and were reduced considerably after 20 minutes. Thermodynamic and kinetic models were used in the calculations of twin density-grain size relationships. The results indicated that the contribution of strain is equivalent to the increase of grain boundary energy, which provided an extra driving force and improved probability of twin embryo formation.
4

Application of thermomechanical processing for the improvement of boundary configurations in commercially pure nickel

Li, Qiangyong 15 January 2009 (has links)
The effect of thermo-mechanical processing by deformation and annealing on the grain boundary configuration of commercially pure Ni-200 is reported in this thesis. Ni-200 is unalloyed, thus avoiding the complex effects associated with alloying elements on the formation and development of different types of grain boundaries. One step strain-recovery with strain levels in the range of 3% to 7.5% (with 1.5% intervals) and annealing temperatures in the range of 800ºC to 1000ºC (with 100ºC intervals) were used in processing. The effects of parameters such as strain level, annealing temperature, annealing time and grain growth on grain boundary configurations were studied. Using Orientation Image Microscopy (OIM) it was found that the Fsp (fraction of special grain boundaries) value of strained samples annealed in the range of 800ºC to 1000ºC began to increase after a critical length of time, after which the Fsp value increased quickly and becoming a maximum in 2~4 minutes. The length of the critical annealing time for the increase of Fsp was shorter in the material with the higher levels of strain at a constant annealing temperature. Also the critical annealing time was shorter when annealed at higher temperatures under a fixed level of strain. The Fsp value increased to 80% from an as received value of about 30% in the samples with varying strain levels. However, the Fsp values only increased from 30% to 45% in the material without strain. Due to grain boundary migration, the Fsp values increased with grain size and became a maximum during the heat treatment of the strained material. In the material without strain however even when grain growth occurred, limited improvement in Fsp values occurred showing that contribution of strain is very important to the formation of special boundaries. By varying the strain levels, annealing temperatures and times, material with high Fsp values in a wide range of grain size can be obtained. Under the present processing conditions used however, multi-cycle was not helpful to the improvement of Fsp. TEM observations indicated dislocation tangles occurred near the grain boundary of the 1x6% strained samples. These dislocation tangles decreased with time at 800˚C and were reduced considerably after 20 minutes. Thermodynamic and kinetic models were used in the calculations of twin density-grain size relationships. The results indicated that the contribution of strain is equivalent to the increase of grain boundary energy, which provided an extra driving force and improved probability of twin embryo formation.
5

Longevity of HDPE Geomembranes in Geoenvironmental Applications

Ewais, AMR 28 February 2014 (has links)
With sufficient time, a high density polyethylene geomembrane will degrade and lose its engineering properties until ruptures signal the end of its service-life. This thesis examines the longevity of nine different geomembranes; five of them were of different thickness manufactured from the same resin. The degradation of properties and time to failure are investigated for geomembranes: in immersion tests; as a part of a landfill composite liner; and, exposed to the elements. The different thermal and stress histories associated with manufacturing geomembranes of different thickness are shown to affect their morphological structure; consequently, their stress crack resistance. When immersed in synthetic leachate, it was found that: (a) thicker geomembranes have a longer antioxidants depletion time but the effect of thickness decreases with temperature and is less than expected; (b) inferences of geomembrane’s longevity based on its initial properties may be misleading because a geomembrane may chemically degrade (as manifested by the change in melt index) despite the presence of a significant amount of stabilizers (as manifested by the measured high pressure oxidative induction time); and, (c) stress crack resistance may change before antioxidant depletion or chemical degradation takes place, likely, due to changes in geomembrane morphological structure with the maximum decrease being observed at 55oC. Reductions also were measured for geomembrane immersed in air and water at 55oC. The geomembrane aged in a simulated landfill liner at 85oC is shown to have service-life as little as three years with 30,000 to >2.0 million ruptures/hectare at failure. For exposed geomembranes in Alumbrera (Argentina), samples were exhumed from two mine facilities after ~16 years of exposure. The antioxidants in exposed samples depleted to residual and the stress crack resistance had dropped to as low as 70 hours. Samples were exhumed from a different exposed geomembrane in a test site in Godfrey (Canada) after six years of exposure. The antioxidants were partially depleted, with depletion to residual projected to take at least 20 years; however, despite no evidence of chemical ageing, the stress crack resistance had decreased from 330 to 190 hours, likely due to changes in the morphological structure of the geomembrane. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2014-02-28 04:59:20.834
6

Study Of Stress Intensity Factor And Crack Stability In A Notched Bilayer System

Mukherjee, Sibasish 07 1900 (has links) (PDF)
No description available.
7

Biofoams and Biocomposites based on Wheat Gluten Proteins

Wu, Qiong January 2017 (has links)
Novel uses of wheat gluten (WG) proteins, obtained e.g. as a coproduct from bio-ethanol production, are presented in this thesis. A flame-retardant foam was prepared via in-situ polymerization of hydrolyzed tetraethyl orthosilicate (TEOS) in a denatured WG matrix (Paper I). The TEOS formed a well-dispersed silica phase in the walls of the foam. With silica contents ≥ 6.7 wt%, the foams showed excellent fire resistance. An aspect of the bio-based foams was their high sensitivity to fungi and bacterial growth. This was addressed in Paper II using a natural antimicrobial agent Lanasol. In the same paper, a swelling of 32 times its initial weight in water was observed for the pristine WG foam and both capillary effects and cell wall absorption contributed to the high uptake. In Paper III, conductive and flexible foams were obtained using carbon-based nanofillers and plasticizer. It was found that the electrical resistance of the carbon nanotubes and carbon black filled foams were strain-independent, which makes them suitable for applications in electromagnetic shielding (EMI) and electrostatic discharge protection (ESD). Paper IV describes a ‘water-welding’ method where larger pieces of WG foams were made by wetting the sides of the smaller cubes before being assembled together. The flexural strength of welded foams was ca. 7 times higher than that of the same size WG foam prepared in one piece. The technique provides a strategy for using freeze-dried WG foams in applications where larger foams are required. Despite the versatile functionalities of the WG-based materials, the mechanical properties are often limited due to the brittleness of the dry solid WG. WG/flax composites were developed for improved mechanical properties of WG (Paper V). The results revealed that WG, reinforced with 19 wt% flax fibres, had a strength that was ca. 8 times higher than that of the pure WG matrix. Furthermore, the crack-resistance was also significantly improved in the presence of the flax. / <p>QC 20170524</p>
8

Razvoj nanoslojnih i nanokompozitnih metal-nitridnih prevlaka / Design of nanolayered and nanocomposite metal-nitride coatings

Miletić Aleksandar 29 September 2015 (has links)
<p>Razvijene su TiAlN/TiSiN i CrAlN/TiSiN nanoslojne prevlake u kojima je napravljen spoj nanoslojnog i nanokompozitnog dizajna. Akcenat je stavljen na proizvodnju prevlaka visoke tvrdoće i visoke otpornosti na lom. Proučavane su i jednoslojne TiAlN, nanokompozitne TiSiN i višeslojne TiAlN/TiSiN prevlake kako bi se utvrdilo kako dizajn utiče na osobine prevlaka. Sve prevlake pripremane su sa jednim, dva i tri stepena rotacije. Pokazano je da dizajn i vid rotacije značajno utiču na mikrostrukturu i teksturu prevlaka, a time na njihove mehaničke osobine, otpornost na lom, adheziju između prevlake i podloge, topografiju površine i tribološko ponašanje. Nanoslojne i nanokompozitne prevlake odlikuju se kompaktnom nanokristalnom mikrostrukturom, dok jednoslojne TiAlN prevlake imaju stubastu strukturu sa kristalnim zrnima veće veličine. Pri prelasku sa jednog na više stepeni rotacije mikrostruktura prevlaka postaje kompaktnija sa kristalnim zrnima manje veličine i manjom poroznošću. U skladu sa tim, najmanju hrapavost, najveću tvrdoću, najveću otpornost na lom i najveću otpornost na habanje imaju nanoslojne i nanokompozitne prevlake pripremane sa dva i tri stepena rotacije.</p> / <p>With the aim to develop hard coatings characterized by both, high hardness<br />and high resistance to cracking, synergy between nanolayered and<br />nanocomposite design was made and nanolayered TiAlN/TiSiN and<br />CrAlN/TiSiN coatings were produced. Monolayer TiAlN, nanocomposite<br />TiSiN and multilayer TiAlN/TiSiN were also studied in order to find the<br />relation between the coating design and their properties. All coatings were<br />deposited with 1-fold, 2-fold and 3-fold rotation. It is shown that coating<br />design and type of rotation have great influence on coating microstructure<br />and texture, and in this way on their mechanical properties, resistance to<br />cracking, adhesion between coating and substrate, surface topography and<br />tribological behavior. Nanolayered and nanocomposite coatings are<br />characterized by compact nanocrystalline microstructure, while monolayer<br />TiAlN coatings have columnar structure with larger crystalline grains. By<br />increasing the number of rotational degrees from 1-fold to 3-fold size of<br />crystalline grains decreases and microstructure becomes more dense.<br />Therefore, nanolayered and nanocomposite coatings deposited with 2-fold<br />and 3-fold rotation are characterized by the highest hardness, highest<br />resistance to cracking, highest wear resistance and the smoothest surface<br />topography.</p>
9

Application Of Polynomial Reproducing Schemes To Nonlinear Mechanics

Rajathachal, Karthik M 01 1900 (has links)
The application of polynomial reproducing methods has been explored in the context of linear and non linear problems. Of specific interest is the application of a recently developed reproducing scheme, referred to as the error reproducing kernel method (ERKM), which uses non-uniform rational B-splines (NURBS) to construct the basis functions, an aspect that potentially helps bring in locall support, convex approximation and variation diminishing properties in the functional approximation. Polynomial reproducing methods have been applied to solve problems coming under the class of a simplified theory called Cosserat theory. Structures such as a rod which have special geometric properties can be modeled with the aid of such simplified theories. It has been observed that the application of mesh-free methods to solve the aforementioned problems has the advantage that large deformations and exact cross-sectional deformations in a rod could be captured exactly by modeling the rod just in one dimension without the problem of distortion of elements or element locking which would have had some effect if the problem were to be solved using mesh based methods. Polynomial reproducing methods have been applied to problems in fracture mechanics to study the propagation of crack in a structure. As it is often desirable to limit the use of the polynomial reproducing methods to some parts of the domain where their unique advantages such as fast convergence, good accuracy, smooth derivatives, and trivial adaptivity are beneficial, a coupling procedure has been adopted with the objective of using the advantages of both FEM and polynomial reproducing methods. Exploration of SMW (Sherman-Morrison-Woodbury) in the context of polynomial reproducing methods has been done which would assist in calculating the inverse of a perturbed matrix (stiffness matrix in our case). This would to a great extent reduce the cost of computation. In this thesis, as a first step attempts have been made to apply Mesh free cosserat theory to one dimensional problems. The idea was to bring out the advantages and limitations of mesh free cosserat theory and then extend it to 2D problems.
10

Spontaneous Crack Propagation In Functionally Graded Materials

Haldar, Sandip 12 1900 (has links)
Functionally graded materials (FGMs) are composites that have continuously varying material properties, which eliminate undesirable stress concentrations that might otherwise occur in layered composites. The concept of inhomogeneously varying properties is observed in nature; examples include bones, teeth, shells and timber. Modern engineering applications of FGMs include thermal barrier coatings, wear-resistant coatings, biomedical implants and MEMS devices. Syntactic foams, particle filled nano-composites are examples of inhomogeneous materials of current interest. Analyses and experiments available in the literature have focused on characterizing the inhomogeneous material modulus and density variations. Common techniques employed are nano-indentation and wave propagation studies. There are a few fracture mechanics analyses and experiments available in the literature; most of which are devoted to measuring the fracture toughness of graded materials. A few fracture analyses of graded materials are devoted to deriving asymptotic stress, strain and displacement fields around stationary and steadily growing cracks in inhomogeneous materials. Only a few studies exist that deal with understanding the effect of material property inhomogeneity on the spontaneous crack propagation. In the present thesis the effect of material property inhomogeneity on the dynamic fracture mechanics of cracks in FGMs is described. Numerical analysis of the elastodynamic initial boundary value problem is performed using a spectral scheme. Spectral scheme is a special numerical technique developed to simulate spontaneous, planar crack propagation in a variety of materials. The method is numerically efficient as it can be implemented on parallel machines with ease. The numerical scheme is versatile and can handle any state-and rate-dependent traction-separation laws (cohesive zone models) or frictional laws. Spectral scheme has successfully been used in simulating intersonic crack propagation, earthquake slip dynamics and also direct silicon wafer bonding process used in realizing 3D MEMS structures. In the present work, the spectral formulation accounts for the inhomogeneous variation in the material wave speeds in the medium. The effect of inhomogeneity on spontaneous crack propagation due to in-plane mixed-mode loading is also addressed here. A parametric study has been performed by varying the inhomogeneity length scales independently in the top and bottom half-spaces. The effect of inhomogeneity in shear wave speed on the dynamic stress intensity factors (SIFs) of a crack propagating in a quasi-steady-state along the interface between the two functionally graded half-spaces is studied. A symmetric hardening FGM offers the maximum fracture resistance, while the fracture resistance is minimum for a symmetric softening FGM. Our simulation shows that increasing the inhomogeneity in the wave speed leads to eliminate the overshoot in the dynamic stress intensity factor. The magnitude of the steady-state (long-time) SIF increases indicating an increase in the fracture resistance. The effect of the inhomogeneous wave speed on the mode-3 crack propagation characteristics is demonstrated by taking snapshots of the crack opening at a time interval. The magnitude of the crack sliding displacement is found to increase with increase in the inhomogeneity. The effect of the material property inhomogeneity on the mode-1 crack propagation is simulated to track the crack opening displacements. The inhomogeneity is assumed to be symmetric about the weak-plane. Our spectral scheme developed here for functionally graded material with exponential variation in the material properties is capable of simulating independent bimaterial combinations. When the graded material becomes progressively stiffer and denser (hardening), the crack opening displacement in reduced, indicating an increase in the fracture resistance. On the other hand, for the softening FGMs the crack opening displacement increases indicating a reduction in fracture toughness. It is noted that the cohesive fracture resistance on the weak-plane remains same in all the FGMs.

Page generated in 0.2509 seconds