• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Online damage detection on shafts using torsional and undersampling measurement techniques

Bhana, Vishal Bhooshan 10 June 2013 (has links)
The presence of cracks in rotors is one of the most dangerous defects of rotating machinery. This can lead to catastrophic failure of the shaft and long out-of-service periods. The occurrence of a crack in a rotating shaft introduces changes in flexibilities which alters the dynamics during operation. This research deals with detecting damage in rotors by means of constantly monitoring the variation in the rotor’s dynamics during normal operating conditions. This project entails a computer finite element section as well as an experimental investigation. The flexibility in the region of the crack is different from an uncracked section. A finite element model of a shaft is built and investigated. The damaged model is the same except that the nodes in the location of the crack are not equivalenced in order to represent the crack. A simple constant cross-sectional shaft with semi-circular transverse surface cracks varying in size have been modelled on the Patran finite element software and a normal modes analysis was done using the Nastran solver. The results revealed a change in the natural frequencies due to the variation in the size of the crack. The experimental investigation involved creating sample shafts with damage positioned in them that would closely resemble what one may find in actual real-life situations and the dynamics during rotation with various torsional loadings are investigated and monitored using three methods. A fibre-optical sensor, Digital image correlation system and telemetry strain gauges were used. Undersampling techniques were used for the DIC system. Results showed that the fibre-optic sensor is by far the most favourable as it is able to detect damage under constant operation. The finite element model was updated by re-modelling the geometry, damage and material properties. The solution of the analysis matched the experimental results closely and model verification was achieved. / Dissertation (MEng)--University of Pretoria, 2013. / Mechanical and Aeronautical Engineering / unrestricted

Page generated in 0.0466 seconds