• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • Tagged with
  • 27
  • 27
  • 15
  • 14
  • 12
  • 10
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analysis of Factors Affecting Crash Severity of Pedestrian and Bicycle Crashes Involving Vehicles at Intersections

Alshehri, Abdulaziz Hebni 20 December 2017 (has links)
No description available.
22

Fatal Crash Trends and Analysis in Southeastern States

Wang, Chunyan 11 April 2006 (has links)
Southeastern states have about 26 percent of the nations total fatalities, and are about 24 percent above the national mean over recent years. Descriptive statistics, graphs, and figures are used to illustrate and quantify the crash trends, which depict a comprehensive picture of status and trends of the fatal crashes in southeastern states. The severity of crashes is studied as a function of characteristics of the person involved in the crash, vehicle, traffic condition, physical road geometry, and environmental factors. Detailed geometric feature data were collected for this study, which makes it possible to investigate the relationship between geometric features and crash severity. This study identifies causal factors contributing to the high fatality rate in southeastern states, and sheds light on the differences and similarities among these states for reducing the severity of fatal crashes, by developing multinomial logit models to explain the severity and type of fatal crashes.
23

Work zone crash analysis and modeling to identify factors associated with crash severity and frequency

Dias, Ishani Madurangi January 1900 (has links)
Doctor of Philosophy / Civil Engineering / Sunanda Dissanayake / Safe and efficient flow of traffic through work zones must be established by improving work zone conditions. Therefore, identifying the factors associated with the severity and the frequency of work zone crashes is important. According to current statistics from the Federal Highway Administration, 2,372 fatalities were associated with motor vehicle traffic crashes in work zones in the United States during the four years from 2010 to 2013. From 2002 to 2014, an average of 1,612 work zone crashes occurred in Kansas each year, making it a serious concern in Kansas. Objectives of this study were to analyze work zone crash characteristics, identify the factors associated with crash severity and frequency, and to identify recommendations to improve work zone safety. Work zone crashes in Kansas from 2010 to 2013 were used to develop crash severity models. Ordered probit regression was used to model the crash severities for daytime, nighttime, multi-vehicle and single-vehicle work zone crashes and for work zones crashes in general. Based on severity models, drivers from 26 to 65 years of age were associated with high crash severities during daytime work zone crashes and driver age was not found significant in nighttime work zone crashes. Use of safety equipment was related to reduced crash severities regardless of the time of the crash. Negative binomial regression was used to model the work zone crash frequency using work zones functioned in Kansas in 2013 and 2014. According to results, increased average daily traffic (AADT) was related to higher number of work zone crashes and work zones in operation at nighttime were related to reduced number of work zone crashes. Findings of this study were used to provide general countermeasure ideas for improving safety of work zones.
24

Three essays on unveiling complex urban phenomena: toward improved understanding

Lym, Youngbin 13 November 2020 (has links)
No description available.
25

Factors Associated with Crash Severities in Built-up Areas Along Rural Highways of Nevada: A Case Study of 11 Towns

Shrestha, Pramen P., Shrestha, Joseph 01 February 2017 (has links)
In 2014, 32,675 deaths were recorded in vehicle crashes within the United States. Out of these, 51% of the fatalities occurred in rural highways compared to 49% in urban highways. No specific crash data are available for the built-up areas along rural highways. Due to high fatalities in rural highways, it is important to identify the factors that cause the vehicle crashes. The main objective of this study is to determine the factors associated with severities of crashes that occurred in built-up areas along the rural highways of Nevada. Those factors could aid in making informed decisions while setting up speed zones in these built-up areas. Using descriptive statistics and binary logistic regression model, 337 crashes that occurred in 11 towns along the rural highways from 2002 to 2010 were analyzed. The results showed that more crashes occurred during favorable driving conditions, e.g., 87% crashes on dry roads and 70% crashes in clear weather. The binary logistic regression model showed that crashes occurred from midnight until 4 a.m. were 58.3% likely to be injury crashes rather than property damage only crashes, when other factors were kept at their mean values. Crashes on weekdays were three times more likely to be injury crashes than that occurred on weekends. When other factors were kept at their mean value, crashes involving motorcycles had an 80.2% probability of being injury crashes. Speeding was found to be 17 times more responsible for injury crashes than mechanical defects of the vehicle. As a result of this study, the Nevada Department of Transportation now can take various steps to improve public safety, including steps to reduce speeding and encourage the use of helmets for motorcycle riders.
26

Spatial Ensemble Distillation Learning Based Real-Time Crash Prediction and Management Framework

Islam, Md Rakibul 01 January 2023 (has links) (PDF)
Real-time crash prediction is a complex task, since there is no existing framework to predict crash likelihood, types, and severity together along with a real-time traffic management strategy. Developing such a framework presents various challenges, including not independent and identically distributed data, imbalanced data, large model size, high computational cost, missing data, sensitivity vs. false alarm rate (FAR) trade-offs, estimation of traffic restoration time after crash occurrence, and real-world deployment strategy. A novel spatial ensemble distillation learning modeling technique is proposed to address these challenges. First, large-scale real-time data were used to develop a crash likelihood prediction model. Second, the proposed crash likelihood model's viability in predicting specific crash types was tested for real-world applications. Third, the framework was extended to predict crash severity in real-time, categorizing crashes into four levels. The results demonstrated strong performance with sensitivities of 90.35%, 94.80%, and 84.23% for all crashes, rear-end crashes, and sideswipe/angle crashes, and 83.32%, 81.25%, 83.08%, and 84.59% for fatal, severe, minor injury, and PDO crashes, respectively, all while remaining very low FARs. This methodology can also reduce model size, lower computation costs, improve sensitivity, and decrease FAR. These results will be used by traffic management center for taking measures to prevent crashes in real-time through active traffic management strategies. The framework was further extended for efficient traffic management after any crash occurrence despite adopting these strategies. Particularly, the framework was extended to predict the traffic state after a crash, predict the traffic restoration time based on the estimated post-crash traffic state, and apply a three-step validation technique to evaluate the performance of the developed approach. Finally, real-world deployment strategies of the proposed methodologies for real-time crash prediction along with their types and severities and real-time post-crash management are discussed. Overall, the methodologies presented in this dissertation offer multifaceted novel contributions and have excellent potential to reduce fatalities and injuries.
27

Evaluating Factors Contributing to Crash Severity Among Older Drivers: Statistical Modeling and Machine Learning Approaches

Alrumaidhi, Mubarak S. M. S. 23 February 2024 (has links)
Road crashes pose a significant public health issue worldwide, often leading to severe injuries and fatalities. This dissertation embarks on a comprehensive examination of the factors affecting road crash severity, with a special focus on older drivers and the unique challenges introduced by the COVID-19 pandemic. Utilizing a dataset from Virginia, USA, the research integrates advanced statistical methods and machine learning techniques to dissect this critical issue from multiple angles. The initial study within the dissertation employs multilevel ordinal logistic regression to assess crash severity among older drivers, revealing the complex interplay of various factors such as crash type, road attributes, and driver behavior. It highlights the increased risk of severe crashes associated with head-on collisions, driver distraction or impairment, and the non-use of seat belts, specifically affecting older drivers. These findings are pivotal in understanding the unique vulnerabilities of this demographic on the road. Furthermore, the dissertation explores the efficacy of both parametric and non-parametric machine learning models in predicting crash severity. It emphasizes the innovative use of synthetic resampling techniques, particularly random over-sampling examples (ROSE) and synthetic minority over-sampling technique (SMOTE), to address class imbalances. This methodological advancement not only improves the accuracy of crash severity predictions for severe crashes but also offers a comprehensive understanding of diverse factors, including environmental and roadway characteristics. Additionally, the dissertation examines the influence of the COVID-19 pandemic on road safety, revealing a paradoxical decrease in overall traffic crashes accompanied by an increase in the rate of severe injuries. This finding underscores the pandemic's transformative effect on driving behaviors and patterns, heightening risks for vulnerable road users like pedestrians and cyclists. The study calls for adaptable road safety strategies responsive to global challenges and societal shifts. Collectively, the studies within this dissertation contribute substantially to transportation safety research. They demonstrate the complex nature of factors influencing crash severity and the efficacy of tailored approaches in addressing these challenges. The integration of advanced statistical methods with machine learning techniques offers a profound understanding of crash dynamics and sets a new benchmark for future research in transportation safety. This dissertation underscores the evolving challenges in road safety, especially amidst demographic shifts and global crises, and advocates for adaptive, evidence-based strategies to enhance road safety for all, particularly vulnerable groups like the older drivers. / Doctor of Philosophy / Road crashes are a major concern worldwide, often leading to serious injuries and loss of life. This dissertation delves into the critical issue of road crash severity, with a special focus on older drivers and the challenges brought about by the COVID-19 pandemic. Drawing on data from Virginia, USA, the research combines cutting-edge statistical methods and machine learning to shed light on this pressing matter. One important part of the research focuses on older drivers. It uses advanced analysis to find out why crashes involving this group might be more serious. The study discovered that situations like head-on collisions, driver distraction or impairment, and not wearing seat belts greatly increase the risk for older drivers. Understanding these risks is crucial in identifying the special needs of older drivers on the road. Then, the study explores the power of machine learning in predicting crash severity. Here, the research stands out by using innovative techniques to balance out the data, leading to more accurate predictions. This part of the study not only improves our understanding of what leads to severe crashes but also highlights how different environmental and road factors play a role. Following this, the research looks at how the COVID-19 pandemic has impacted road safety. Interestingly, while the overall number of crashes went down during the pandemic, the rate of severe injuries in the crashes that occurred increased. This suggests that the pandemic changed driving behaviors, posing increased risks especially to pedestrians and cyclists. In summary, this dissertation offers valuable insights into the complex factors affecting road crash severity. It underscores the importance of using advanced analysis techniques to understand these dynamics better, especially in the face of demographic changes and global challenges like the pandemic. The findings are not just academically significant; they provide practical guidance for policymakers and road safety experts to develop strategies that make roads safer for everyone, particularly older drivers.

Page generated in 0.0546 seconds