• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Construction automatique de modèles multi-corps de substitution aux simulations de crashtests / Automatized multi-body surrogate models creation to replace crashtests simulations

Loreau, Tanguy 18 December 2019 (has links)
Chez Renault, pour réaliser les études amont, les équipes en charge de la prestation du choc automobile disposent de modèles très simples leur permettant de pré-dimensionner le véhicule. Aujourd'hui, ils sont construits à partir du comportement d'un ou quelques véhicules de référence. Ils sont fonctionnels et permettent le dimensionnement. Mais à présent, l'entreprise souhaite construire ses modèles amont en s'appuyant sur l'ensemble de ses véhicules. En d'autres termes, elle souhaite disposer d'une méthode d'analyse automatique de simulations de crashtests afin de capitaliser leurs résultats dans une base de données de modèles simplifiés.Pour répondre à cet objectif, nous développons une méthode permettant d'extraire des simulations de crashtests les données nécessaires à la construction d'un modèle multi-corps de substitution : CrashScan. Le processus d'analyse implémenté dans CrashScan se résume en trois étapes majeures.La première consiste à identifier l'ensemble des zones peu déformées sur une simulation de crashtest. Cela nous permet de dresser le graphe topologique du futur modèle de substitution. La seconde étape est une analyse des cinématiques relatives entre les portions peu déformées : les directions principales et les modes de déformation (e.g. compression, flexion) sont identifiés en analysant le mouvement relatif. La dernière étape consiste à analyser les efforts et les moments situés entre les zones peu déformées dans les repères associés aux directions principales des déformations en fonction des déformations. Cela nous permet d'identifier des modèles hystérétiques de Bouc-Wen équivalents. Ces modèles disposent de trois paramètres utiles dans notre cas : une raideur, un effort seuil avant plastification et une pente d'écrouissage. Ces paramètres peuvent être utilisés directement par les experts des études amont.Enfin, nous construisons les modèles multi-corps de substitution pour trois cas d'étude différents. Nous les comparons alors à leur référence sur les résultats qu'ils fournissent pour les critères utilisés en amont : les modèles générés par CrashScan semblent apporter la précision et la fidélité nécessaires pour être utilisés en amont du développement automobile.Pour poursuivre ces travaux de recherche et aboutir à une solution industrielle, il reste néanmoins des verrous à lever dont les principaux sont la synthèse d'un mouvement quelconque en six mouvements élémentaires et la synthèse multi-corps sur des éléments autres que des poutres. / At Renault, to fulfill upstream studies, teams in charge of crashworthiness use very simple models to pre-size the vehicle. Today, these models are built from the physical behavior of only one or some reference vehicles. They work and allow to size the project. But today, the company wishes to build its upstream models using all its vehicles. In other words, it wishes to get an automatic method to analyze crashtests simulations to capitalize their results in a database of simplified models.To meet this goal, we decide to use the multi-body model theory. We develop a method to analyze crashtests simulations in order to extract the data required to build a surrogate multi-body model : CrashScan. The analysis process implemented in CrashScan can be split into three major steps.The first one allows to identify the low deformed zones on a crashtest simulation. Then, we can build the topological graph of the future surrogate model. The second step is to analyze the relative kinematics between the low deformed zones : major directions and deformation modes (e.g. crushing or bending) are identified analysing relative movements. The last step is to analyze strengths and moments located between the low deformed zones, viewed in the frames associated to the major directions of deformations in function of the deformations. This allows us to identify equivalent Bouc-Wen hysteretic models. These models have three parameters that we can use : a stiffness, a threshold strength before plastification and a strain of hardening. These parameters can directly be used by upstream studies experts.Finally, we build multi-body models for three different use case. We compare them to their reference over the results they produce for the upstream criteria : models generated with CrashScan seems to grant the precision and the fidelity required to be used during automotive development's upstream phases.To continue this research work and get an industrial solution, there are still some locks to lift, the main ones are : synthesis of any movement into six elementary ones and multi-body synthesis on elements other than beams.
2

Entwicklung eines biofidelen Dummys zur Darstellung komplexer Verletzungen beim Fahrzeugcrash

Härtel, Benjamin 31 July 2024 (has links)
Für die Fahrzeugsicherheit und die Bewertung von Fahrzeugstrukturen spielt die Entwicklung von Crashtest-Dummys eine zentrale Rolle. Diese menschenähnlichen Puppen werden bei Crashtests eingesetzt, um die Auswirkungen von Kollisionen auf den Körper zu untersuchen. Der Stand des Wissens zeigt, dass aktuelle Crashtest-Dummys nach dem Prinzip der Ermittlung von physikalischen Belastungsgrößen arbeiten. Die komplexe Verletzungsentstehung infolge von Verkehrsunfällen lässt sich damit nicht vollständig darstellen. Ziel dieser Arbeit ist die Entwicklung, Konstruktion und Erprobung eines neuartigen Dummys mit biofidelen Eigenschaften zur Darstellung komplexer Verletzungen. Es wird ein Konzept entwickelt, mit dem Verletzungen durch Materialschäden direkt am Dummy dargestellt werden können. Die Konstruktion des biofidelen Dummys orientiert sich an der menschlichen Anatomie und Trauma-Biomechanik. Mit der Auswahl unterschiedlicher Werkstoffe wird ein Dummy gefertigt, der viele komplexe Verletzungen direkt darstellt. Im Rahmen dieser Arbeit wurde der biofidele Dummy in Schlittenversuchen und Crashtests untersucht. Die erfolgreiche Validierung des biofidelen Dummys zeigt, dass es möglich ist, eine Korrelation zwischen Materialschäden am Dummy und menschlichen Verletzungen herzuleiten.

Page generated in 0.0416 seconds