• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas / Parallelization of credal network inference using distributed computing for sparse matrix factorization.

Pereira, Ramon Fortes 25 April 2017 (has links)
Este estudo tem como objetivo melhorar o desempenho computacional dos algoritmos de inferência em redes credais, aplicando técnicas de computação paralela e sistemas distribuídos em algoritmos de fatoração de matrizes esparsas. Grosso modo, técnicas de computação paralela são técnicas para transformar um sistema em um sistema com algoritmos que possam ser executados concorrentemente. E a fatoração de matrizes são técnicas da matemática para decompor uma matriz em um produto de duas ou mais matrizes. As matrizes esparsas são matrizes que possuem a maioria de seus valores iguais a zero. E as redes credais são semelhantes as redes bayesianas, que são grafos acíclicos que representam uma probabilidade conjunta através de probabilidades condicionais e suas relações de independência. As redes credais podem ser consideradas como uma extensão das redes bayesianas para lidar com incertezas ou a má qualidade dos dados. Para aplicar a técnica de paralelização de fatoração de matrizes esparsas na inferência de redes credais, a inferência utiliza-se da técnica de eliminação de variáveis onde o grafo acíclico da rede credal é associado a uma matriz esparsa e cada variável eliminada é análoga a eliminação de uma coluna. / This study\'s objective is the computational performance improvement of credal network inference algorithms by applying computational parallel and distributed system techniques of sparse matrix factorization algorithms. Roughly, computational parallel techniques are used to transform systems in systems with algorithms that can be executed concurrently. And the matrix factorization is a group of mathematical techniques to decompose a matrix in a product of two or more matrixes. The sparse matrixes are matrixes which have most of their values equal to zero. And credal networks are similar to Bayesian networks, which are acyclic graphs representing a joint probability through conditional probabilities and their independence relations. Credal networks can be considered as a Bayesian network extension because of their manner of leading to uncertainty and the poor data quality. To apply parallel techniques of sparse matrix factorization in credal network inference the variable elimination method was used, where the credal network acyclic graph is associated to a sparse matrix and every eliminated variable is analogous to an eliminated column.
2

Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas / Parallelization of credal network inference using distributed computing for sparse matrix factorization.

Ramon Fortes Pereira 25 April 2017 (has links)
Este estudo tem como objetivo melhorar o desempenho computacional dos algoritmos de inferência em redes credais, aplicando técnicas de computação paralela e sistemas distribuídos em algoritmos de fatoração de matrizes esparsas. Grosso modo, técnicas de computação paralela são técnicas para transformar um sistema em um sistema com algoritmos que possam ser executados concorrentemente. E a fatoração de matrizes são técnicas da matemática para decompor uma matriz em um produto de duas ou mais matrizes. As matrizes esparsas são matrizes que possuem a maioria de seus valores iguais a zero. E as redes credais são semelhantes as redes bayesianas, que são grafos acíclicos que representam uma probabilidade conjunta através de probabilidades condicionais e suas relações de independência. As redes credais podem ser consideradas como uma extensão das redes bayesianas para lidar com incertezas ou a má qualidade dos dados. Para aplicar a técnica de paralelização de fatoração de matrizes esparsas na inferência de redes credais, a inferência utiliza-se da técnica de eliminação de variáveis onde o grafo acíclico da rede credal é associado a uma matriz esparsa e cada variável eliminada é análoga a eliminação de uma coluna. / This study\'s objective is the computational performance improvement of credal network inference algorithms by applying computational parallel and distributed system techniques of sparse matrix factorization algorithms. Roughly, computational parallel techniques are used to transform systems in systems with algorithms that can be executed concurrently. And the matrix factorization is a group of mathematical techniques to decompose a matrix in a product of two or more matrixes. The sparse matrixes are matrixes which have most of their values equal to zero. And credal networks are similar to Bayesian networks, which are acyclic graphs representing a joint probability through conditional probabilities and their independence relations. Credal networks can be considered as a Bayesian network extension because of their manner of leading to uncertainty and the poor data quality. To apply parallel techniques of sparse matrix factorization in credal network inference the variable elimination method was used, where the credal network acyclic graph is associated to a sparse matrix and every eliminated variable is analogous to an eliminated column.

Page generated in 0.0429 seconds