• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microstructures and Mechanical Strengthening Mechanisms of Nanoparticle Reinforced Mg Based Composites

Hung, Yin-po 17 July 2006 (has links)
The success in fabrication of various nano-sized powders, wires or tubes has arisen the new possibility in modifying the existing commercial materials in terms of their functional or structural characteristics. In this study, the AZ61 Mg alloy is adopted as the matrix, and nano-sized SiO2 particulates are introduced into the alloy by means of casting, powder metallurgy, or spray forming processes to fabricate a high performance Mg matrix composite. The strengthening mechanisms, fracture toughness and bending toughness of the AZ61 Mg based composites are examined. The composites were prepared either by spray forming, ingot metallurgy, or powder metallurgy, followed by severe hot extrusion. The spray formed composites exhibit the best nano particle distribution and toughness, but the volume fraction of the nano particles that can be inserted is limited. The nano composites fabricated through the powder metallurgy method possess the highest strength due to the extra strengthening effect from the MgO phase. Strengthening analysis based on the Orowan strengthening mechanism can predict well the composite strength provided that the nano particles are in reasonably uniform dispersion. For composites containing higher nano particle volume fractions greater than 3%, the experimental strength data fall well below the theoretical predictions, suggesting poor dispersion of the reinforcement. The creep properties of the composites are also explored. The specimens are subjected to tensile loading at temperatures 200 to 400oC and strain rates 1x10-3 to 1x10-1. The creep mechanism is identified as dislocation creep controlled with the rate controlling diffusion step being the magnesium lattice diffusion at low strain rates and grain boundary diffusion at high strain rates.
2

Packing of particles during softening and melting process.

Zheng, Xiao-Qin, Materials Science & Engineering, Faculty of Science, UNSW January 2007 (has links)
Softening deformation of iron ore in the form of sinter, pellet, and lump ore in the cohesive zone of an ironmaking blast furnace is an important phenomenon that has a significant effect on gas permeability and consequently blast furnace production efficiency. The macroscopic softening deformation behavior of the bed and the microscopic deformation behavior of the individual particles in the packed bed are investigated in this study using wax balls to simulate the fused layer behavior of the cohesive zone. The effects of softening temperature, load pressure, and bed composition (mono - single melting particles, including pure or blend particles vs binary ??? two different melting point particles) on softening deformation are examined. The principal findings of this study are: 1. At low softening temperatures, an increase in load pressure increases the deformation rate almost linearly. 2. At higher softening temperatures, an increase in load pressure dramatically increases the deformation rate, and after a certain time there is no more significant change in deformation rate. 3. The bed deformation rate of a mono bed is much greater than that of a binary one. 4. In a binary system, the softening deformation rate increases almost proportionally with the increase in the amount of lower melting point wax balls. 5. In a mono system with blend particles, the content of the lower melting point material has a more significant effect on overall bed deformation than the higher melting point one. 6. The macro softening deformation of the bed behaves the theory of creep deformation. 7. A mathematical model for predicting bed porosity change due to softening deformation based on creep deformation theory has been developed. 8. Increase in load pressure also reduces the peak contact face number of the distribution curves, and this is more prominent with higher porosity values. 9. The contribution of contact face number to bed porosity reduction is more pronounced in a mono system than in a binary system. 10. The porosity reduction in a binary bed is more due to the contact face area increase, presumably of the lower melting point particles. 11. The mono system has a single peak contact face number distribution pattern while the binary system exhibits a bimodal distribution pattern once the higher melting point material starts to deform. 12. In a binary system, an increase in deformation condition severity tends to reduce the contact face number of the higher melting point material without having to increase the contact face number of the lower melting point material accordingly to achieve a given porosity.
3

Packing of particles during softening and melting process.

Zheng, Xiao-Qin, Materials Science & Engineering, Faculty of Science, UNSW January 2007 (has links)
Softening deformation of iron ore in the form of sinter, pellet, and lump ore in the cohesive zone of an ironmaking blast furnace is an important phenomenon that has a significant effect on gas permeability and consequently blast furnace production efficiency. The macroscopic softening deformation behavior of the bed and the microscopic deformation behavior of the individual particles in the packed bed are investigated in this study using wax balls to simulate the fused layer behavior of the cohesive zone. The effects of softening temperature, load pressure, and bed composition (mono - single melting particles, including pure or blend particles vs binary ??? two different melting point particles) on softening deformation are examined. The principal findings of this study are: 1. At low softening temperatures, an increase in load pressure increases the deformation rate almost linearly. 2. At higher softening temperatures, an increase in load pressure dramatically increases the deformation rate, and after a certain time there is no more significant change in deformation rate. 3. The bed deformation rate of a mono bed is much greater than that of a binary one. 4. In a binary system, the softening deformation rate increases almost proportionally with the increase in the amount of lower melting point wax balls. 5. In a mono system with blend particles, the content of the lower melting point material has a more significant effect on overall bed deformation than the higher melting point one. 6. The macro softening deformation of the bed behaves the theory of creep deformation. 7. A mathematical model for predicting bed porosity change due to softening deformation based on creep deformation theory has been developed. 8. Increase in load pressure also reduces the peak contact face number of the distribution curves, and this is more prominent with higher porosity values. 9. The contribution of contact face number to bed porosity reduction is more pronounced in a mono system than in a binary system. 10. The porosity reduction in a binary bed is more due to the contact face area increase, presumably of the lower melting point particles. 11. The mono system has a single peak contact face number distribution pattern while the binary system exhibits a bimodal distribution pattern once the higher melting point material starts to deform. 12. In a binary system, an increase in deformation condition severity tends to reduce the contact face number of the higher melting point material without having to increase the contact face number of the lower melting point material accordingly to achieve a given porosity.

Page generated in 0.0647 seconds