• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • Tagged with
  • 32
  • 32
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mowing and light-weight rolling of creeping bentgrass (Agrostis stolonifera L.) putting greens during summer heat stress periods in the transition zone

Strunk, William Daniel, January 2006 (has links) (PDF)
Thesis (M.S.) -- University of Tennessee, Knoxville, 2006. / Title from title page screen (viewed on May 31, 2006). Thesis advisor: John C. Sorochan. Vita. Includes bibliographical references.
12

The Effect of Brushing on Creeping Bentgrass Putting Green Quality

Gu, Chenchen 23 September 2016 (has links)
No description available.
13

THE EFFECT OF ALTERED ASSIMILATE ALLOCATION AND PARTITIONING DUE TO PCGA2-OXIDASE OVEREXPRESSION ON THE GROWTH AND PERFORMANCE OF CREEPING BENTGRASS (AGROSTIS STOLONIFERA L.) IN FULL SUN AND REDUCED LIGHT

Studzinska, Aneta Karolina 21 March 2011 (has links)
No description available.
14

Water use and summer stress tolerance mechanisms for creeping bentgrass and Kentucky bluegrass

McCann, Stephen E. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Plant Biology." Includes bibliographical references.
15

The effect of seaweed concentrate on turfgrass growth, nematode tolerance and protein synthesis under moisture stress conditions /

Sun, Hongwei, January 1994 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references. Also available via the Internet.
16

The Effects of Methiozolin Rates and Nitrogen Fertility Strategies for Annual Bluegrass Control and Creeping Bentgrass Safety on Golf Greens

Fang, Chen January 2015 (has links)
No description available.
17

Expanding the Application of Spectral Reflectance Measurement in Turfgrass Systems

McCall, David S. 05 July 2016 (has links)
Light reflectance from plants can be used as a non-invasive predictor of health and yield for many cropping systems, and has been investigated to a lesser extent with managed turfgrass systems. The frequent agronomic inputs associated with maintaining golf course grasses allow for exceptional stand quality under harsh growing conditions, but often expend resources inefficiently, leading to either stand loss or unnecessary inputs in localized areas. Turfgrass researchers have adopted some basic principles of light reflectance formerly developed for cropping systems, but field radiometric-derived narrow-band algorithms for turfgrass-specific protocols are lacking. Research was conducted to expand the feasibility of using radiometry to detect various turfgrass stressors and improve speed and geographic specificity of turfgrass management. Methods were developed to detect applied turfgrass stress from herbicide five days before visible symptoms developed under normal field growing conditions. Soil volumetric water content was successfully estimated using a water band index of creeping bentgrass canopy reflectance. The spectral reflectance of turfgrass treated with conventional synthetic pigments was characterized and found to erroneously influence plant health interpretation of common vegetation indices because of near infrared interference by such pigments. Finally, reflectance data were used to estimate root zone temperatures and root depth of creeping bentgrass systems using a gradient of wind velocities created with turf fans. Collectively, these studies provide a fundamental understanding of several turfgrass-specific reflectance algorithms and support unique opportunities to detect stresses and more efficiently allocate resources to golf course turf. / Ph. D.
18

Evaluating methiozolin programs for golf putting greens and investigating potential modes of action

Venner, Katelyn 06 October 2015 (has links)
Annual bluegrass is a winter annual grass that is problematic on golf putting greens due to its light green color, prolific seedhead production and intolerance to stress. On creeping bentgrass putting greens, herbicides for annual bluegrass control are limited. A new herbicide, methiozolin, developed by Moghu Research Center, LLC, in Daejeon, South Korea, safely and selectively controls annual bluegrass in creeping bentgrass and several other turfgrass species. Methiozolin typically controls annual bluegrass over several weeks, allowing desirable turfgrass time to grow into areas previously infested by annual bluegrass with little surface disruption. The mode of action of methiozolin is unknown, but has been proposed to act as either a cell wall biosynthesis inhibitor (CBI) or an inhibitor of tyrosine aminotransferase (TAT). Field studies were conducted at Virginia Tech to investigate strategies promoting surface recovery on putting greens following atypically rapid annual bluegrass loss resulting from methiozolin application, intensive core-cultivation as well as potential interactions with plant growth regulators (PGR's), like ethephon. In the rapid annual bluegrass removal study, all treatments receiving additional fertility via synthetic fertilizer with or without trinexapac-ethyl or biostimulant recovered 1 to 3 weeks more quickly than treatments that did not include additional fertility. Addition of the PGR trinexapac-ethyl inconsistently regulated speed of canopy recovery, both increasing and decreasing recovery speed. Under normal maintenance conditions, methiozolin does not negatively influence putting green recovery, however, if the putting green is exposed to droughty conditions, methiozolin can reduce recovery time by several weeks. Core-cultivation should be avoided in conjunction with methiozolin and ethephon applications because when this procedure was conducted on the same day as herbicide application it significantly damaged creeping bentgrass, reducing cover to 19% at 2000 g ai ha⁻¹, compared to the non-treated at 62%. Regarding the question of methiozoling mode of action, laboratory studies supported the claim that addition of exogenous 4-hydroxyphenylpyruvate (4-HPP) alleviates symptoms of methiozolin exposure in lesser duckweed, a model monocot species, but feeding various turfgrass species and annual bluegrass exogenous 4-HPP did not alleviate symptoms. Creeping bentgrass secondary root length and density was not affected by methiozolin, although annual bluegrass, Kentucky bluegrass and perennial ryegrass secondary root lengths were reduced. Based on these data, it does not appear that TAT inhibition is a primary mode of action of methiozolin in turfgrass. Studies were conducted to determine if methiozolin inhibited cell wall biosynthesis in desirable turfgrass species and annual bluegrass. All species exhibited decreased enrichment of ¹³C in cell-wall sugars form ¹³C-glucose in response to methiozolin and a known cell wall biosynthesis inhibitor, indaziflam. Indaziflam and methiozolin at 0.01 µM inhibited ¹³C enrichment of all sugars less than methiozolin at 1.0 µM, for xylose, arabinose and glucose, but not galactose. Addition of 4-HPP increased incorporation of ¹³C into xylose, but had no other influence on ¹³C incorporation into other cell wall sugars. Lack of species specific response indicates that cell wall biosynthesis inhibition is probably not the source of interspecific species responses observed in the field. / Ph. D.
19

New strategies for managing dollar spot and silvery-thread moss in creeping bentgrass putting greens

Thompson, Cole S. January 1900 (has links)
Master of Science / Department of Horticulture, Forestry, and Recreation Resources / Jack D. Fry / Dollar spot, caused by Sclerotinia homoeocarpa F.T. Bennett, and silvery-thread moss (Bryum argenteum Hedw.) are pests affecting creeping bentgrass (Agrostis stolonifera L.) that typically require pesticide inputs. New strategies for pest management may reduce chemical inputs. The objectives of these 2009-2010 field studies were to evaluate: 1) creeping bentgrass cultivars for dollar spot susceptibility; 2) alternative chemical controls for silvery-thread moss; and 3) the response of silvery-thread moss to nitrogen (N) sources. During peak dollar spot development, ‘Declaration’, ‘A-4’, and ‘Crenshaw’ had 7.5, 139.4, and 288.9 infection centers m[superscript]-2 under fairway and 2.1, 27.2, and 106.9 infection centers m[superscript]-2 under putting green conditions, respectively. Two spring and two fall spot applications of sodium or potassium bicarbonate (45 g a.i. L[superscript]-1), premixed essential oil, and broadcast applications of carfentrazone-ethyl at 0.09 kg a.i. ha[superscript]-1 suppressed moss 39% to 55% compared to untreated in 2009. Spot sprays of sodium or potassium bicarbonate, and essential oil, were phytotoxic to creeping bentgrass and required up to 8 or 18 days, respectively, to return to acceptable quality. Fertilization with liquid urea (N at 16.3 kg ha[superscript]-1 biweekly, 210 kg ha[superscript]-1 annually) resulted in 147%, 150%, and 155% more moss than fertilization with IBDU, organic N, and granular urea, respectively, and 156% more moss compared to untreated. Fertilization with urea (liquid or granular) resulted in the best creeping bentgrass color. Averaged across the entire season, plots treated with organic N had unacceptable color in 2009. Nitrogen concentrations in moss tissue ranged from 0.4% to 1.0% and were always significantly lower than N concentrations observed in creeping bentgrass (1.1% to 2.1%), regardless of treatment. In 2010, moss treated with liquid urea had higher tissue N concentrations (1.0%) than untreated moss (0.5%) or that fertilized with IBDU (0.4%). In summary, use of dollar spot-resistant creeping bentgrass cultivars could reduce fungicide requirements. Bicarbonate and essential oil products can reduce moss severity at a similar level to carfentrazone-ethyl, but rates and/or application methods need to be optimized to avoid injury to creeping bentgrass. Applications of liquid urea enhanced moss coverage in creeping bentgrass compared to other N sources.
20

Evaluating small unmanned aerial systems for detecting drought stress in turfgrass

HONG, MU January 1900 (has links)
Master of Science / Department of Horticulture and Natural Resources / Dale J. Bremer / Recent advances in small unmanned aerial systems (sUAS) may provide rapid and accurate methods for turf research and management. The study was to evaluate early drought detection ability of ultra-high resolution remote sensing with sUAS technology, and compare it with traditional techniques on fairway-height ‘Declaration’ creeping bentgrass (Agrostis stolonifera L.) treated from severe deficit to well-watered irrigation (15, 30, 50, 65, 80, and 100% evapotranspiration replacement). Airborne measurements with a modified digital camera mounted on a hexacopter included reflectance from broad bands (near infrared [NIR, 680-780 nm], and green and blue bands [overlapped, 400-580 nm]), from which eight vegetation indices (VIs) were derived for evaluation. Canopy temperature was measured only in the final year with a thermal infrared camera mounted on a drone. Traditional measurements were volumetric water content (VWC), visual quality (VQ), percentage green cover (PGC), and VIs from handheld devices. Declines in VWC in irrigation-deficit treatments were consistently detected by the NIR band and six VIs from sUAS, and NDVI and red band from a handheld device, before drought stress was evident in VQ. These bands and indices predicted drought stress at least one week before symptoms appeared in VQ. Canopy temperature predicted drought stress as early as the best VIs and NIR, 16 days before symptoms appeared in VQ in 2017. Only the NIR and GreenBlue VI [(green-blue)/(green+blue)] consistently predicted drought stress throughout three years. Results indicate using ultra-high resolution remote sensing with sUAS can detect drought stress before it is visible to the human eye and may prove viable for irrigation management on turfgrass.

Page generated in 0.0641 seconds