• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Plane Quartic Cremona Transformation

Titgemeyer, Theodore W. January 1949 (has links)
No description available.
2

Certain Cremona Transformations of Space

McKenna, Donald P. January 1950 (has links)
No description available.
3

A Special Plane Cubic Cremona Transformation

Archer, Lawrence H. January 1951 (has links)
No description available.
4

The Plane Quartic Cremona Transformation

Titgemeyer, Theodore W. January 1949 (has links)
No description available.
5

Certain Cremona Transformations of Space

McKenna, Donald P. January 1950 (has links)
No description available.
6

A Special Plane Cubic Cremona Transformation

Archer, Lawrence H. January 1951 (has links)
No description available.
7

[en] CREMONA TRANSFORMATIONS AS HIPERBOLIC ISOMETRIES / [pt] TRANSFORMAÇÕES DE CREMONA COMO ISOMETRIAS HIPERBÓLICAS

LUIZE MELLO D URSO VIANNA 06 January 2022 (has links)
[pt] O Grupo de Cremona é o grupo das Transformações birracionais do plano projetivo e tem um papel muito importante em Geometria Birracional. Pelo Teorema de Nöether-Castelnuovo (final do século XIX), o Grupo de Cremona é gerado pelos automorfismos do plano projetivo e pela Transformação Quadrática Padrão. Apesar de compreendermos bem o grupo de automorfismos do Plano Projetivo e a Transformação Quadrática Padrão, o estudo do Grupo de Cremona é bastante desafiador, e sua estrutura ainda não é totalmente conhecida. Somente em 2013, Cantat e Lamy provaram que o Grupo de Cremona não é simples no caso de um corpo algebricamente fechado. Em 2016, Anne Lonjou provou o mesmo para qualquer corpo. Ambas as provas se baseiam em uma ação por isometrias do Grupo de Cremona em um espaço hiperbólico de dimensão infinita. Nosso objetivo será entender essa ação e como ela pode ser usada no estudo do Grupo de Cremona. / [en] The Cremona Group is the group of Birrational Transformations of the projective plane and has a very important role in Birrational Geometry. By the Nöether-Castelnuovo Theorem (late 19th century), the Cremona Group is generated by the automorphisms of the projective plane and by the Standard Quadratic Transformation. Although we understand well the group of automorphisms of the projective plane and the Standard Quadratic Transformation, the study of the Cremona Group is quite challenging, and its structure is not yet fully known. Only in 2013, Cantat and Lamy proved that the Cremona Group is not simple in the case of an algebraically closed field. In 2016, Anne Lonjou proved the same for any field. Both proofs are based on an action by isometries of the Cremona Group in a hyperbolic space of infinite dimension. Our goal will be to understand this action and how it can be used in the study of the Cremona Group.

Page generated in 0.1199 seconds