• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Pore Size and Thickness on Critical Pressure of Elastic Systems

Carter, Barton P. 19 July 2005 (has links)
Significant energy savings can be achieved by improving efficiency of water removal in the press section of a paper machine, rather than energy-intensive evaporative dryer cans. Impulse drying is a novel technology to remove water from the sheet in the press section by using a heated press roll. Delamination is a major challenge to be overcome before impulse drying can be implemented successfully. Delamination is caused by a region of high temperature liquid water under high pressure in the press. Upon exiting the nip, the pressure drops and the high temperature water flashes to steam. If the expansion of the steam is too strong, the bonds between the fibers will fail and a blister will form. The formation of this blister is characteristic of delamination. The goal of this project was to understand the internal mechanics of a wet web as it exits the nip of an impulse dryer. In this way, the components of the sheet can be tailored to open the operating window of impulse drying. A mathematical model, developed to describe the deflection and delamination of an elastic membrane, was utilized in this work. Three failure criteria were employed to represent delamination of this pliable membrane from the more rigid sub layers in the sheet. The experimental portion of this effort was devoted to showing the validity of these models and which was the best fit. A series of experiments were employed to validate the model. A peel test was used to determine the amount of work needed to pull a membrane from a rigid substrate. Pressurized blister experiments were conducted to find the relationship between critical pressure and initial defect size. The predictions from the mathematical model were then compared to these experimental values. Finally, work was done to understand the physics of the delamination of a porous membrane.
2

Modeling Fluid Interactions with Granular and Fibrous Surfaces

Mokhtabad Amrei, Mana 01 January 2016 (has links)
Understanding the interactions between a body of liquid and a curvy surface is important for many applications such as underwater drag force reduction, droplet filtration, self-cleaning, and fog harvesting, among many others. This study investigates ways to predict the performance of granular and fibrous surfaces for some of the above applications. More specifically, our study is focused on 1) modeling the mechanical stability of the air-water interface over submerged superhydrophobic (SHP) surfaces and their expected drag reduction benefits, and 2) predicting the mechanical stability of a droplet on a fiber in the presence of an external body force. For the first application, we modeled the air–water interface over submerged superhydrophobic coatings comprised of particles/fibers of different diameters or Young–Laplace contact angles. We developed mathematical expressions and modeling methodologies to determine the maximum depth to which such coatings can be used for underwater drag reduction as well as the magnitude of the depth-dependent drag reduction effect of the surface. For the second application, we studied the force required to detach a droplet from a single fiber or from two crossing fibers. The results of our numerical simulations were compared to those obtained from experiment with ferrofluid droplets under a magnetic field, and excellent agreement was observed. Such information is of crucial importance in design and manufacture of droplet–air and droplet–fluid separation media, fog harvesting media, protective clothing, fiber-reinforced composite materials, and countless other applications.
3

Transonic Flow Around Swept Wings: Revisiting Von Kármán’s Similarity Rule

January 2016 (has links)
abstract: Modern aircraft are expected to fly faster and more efficiently than their predecessors. To improve aerodynamic efficiency, designers must carefully consider and handle shock wave formation. Presently, many designers utilize computationally heavy optimization methods to design wings. While these methods may work, they do not provide insight. This thesis aims to better understand fundamental methods that govern wing design. In order to further understand the flow in the transonic regime, this work revisits the Transonic Similarity Rule. This rule postulates an equivalent incompressible geometry to any high speed geometry in flight and postulates a “stretching” analogy. This thesis utilizes panel methods and Computational Fluid Dynamics (CFD) to show that the “stretching” analogy is incorrect, but instead the flow is transformed by a nonlinear “scaling” of the flow velocity. This work also presents data to show the discrepancies between many famous authors in deriving the accurate Critical Pressure Coefficient (Cp*) equation for both swept and unswept wing sections. The final work of the thesis aims to identify the correct predictive methods for the Critical Pressure Coefficient. / Dissertation/Thesis / Masters Thesis Aerospace Engineering 2016
4

Scour protection of submarine pipelines using rubber plates underneath the pipes

Yang, L., Shi, B., Guo, Yakun, Zhang, L., Zhang, J., Han, Y. 04 May 2014 (has links)
Yes / This paper presents the results from laboratory experiments to investigate the protection of scour around submarine pipelines under unidirectional flow using a rubber plate placed underneath the pipes. The pressure difference on the two sides of the pipeline is the driving force to initiate the movement of sediment particles and can be obtained by force balance analysis. Experiments covering a wide range of incoming flow velocity, pipe diameter and plate length show that there exists a critical pressure difference over which the movement of sediment and, thus, scour takes place. Analysis of the experimental results demonstrates that this critical pressure difference is related to the pressure difference of the axial points between upstream and downstream of the pipe, which can be easily determined. This critical pressure difference is used to develop an empirical formula for estimating the critical length of the rubber plate, over which the sediment movement and scour will not take place. Good agreement between the experiments and calculated critical plate length using the proposed formula is obtained. / National High-Tech Research and Development program of China (863 Program, Grant No.2008AA09Z309), National Nature Science Fund of China (Grant No.50879084, 51279071 and 51279189), the Open Funding from the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKLH-OF-1306)
5

Modeling and experimental evaluation of the effective bulk modulus for a mixture of hydraulic oil and air

2013 September 1900 (has links)
The bulk modulus of pure hydraulic oil and its dependency on pressure and temperature has been studied extensively over the past years. A comprehensive review of some of the more common definitions of fluid bulk modulus is conducted and comments on some of the confusion over definitions and different methods of measuring the fluid bulk modulus are presented in this thesis. In practice, it is known that there is always some form of air present in hydraulic systems which substantially decreases the oil bulk modulus. The term effective bulk modulus is used to account for the effect of air and/or the compliance of transmission lines. A summary from the literature of the effective bulk modulus models for a mixture of hydraulic oil and air is presented. Based on the reviews, these models are divided into two groups: “compression only” models and “compression and dissolve” models. A comparison of various “compression only” models, where only the volumetric compression of air is considered, shows that the models do not match each other at the same operating conditions. The reason for this difference is explained and after applying some modifications to the models, a theoretical model of the “compression only” model is suggested. The “compression and dissolve” models, obtained from the literature review, include the effects of the volumetric compression of air and the volumetric reduction of air due to the dissolving of air into the oil. It is found that the existing “compression and dissolve” models have a discontinuity at some critical pressure and as a result do not match the experimental results very well. The reason for the discontinuity is discussed and a new “compression and dissolve” model is proposed by introducing some new parameters to the theoretical model. A new critical pressure (PC) definition is presented based on the saturation limit of oil. In the new definition, the air stops dissolving into the oil after this critical pressure is reached and any remaining air will be only compressed afterwards. An experimental procedure is successfully designed and fabricated to verify the new proposed models and to reproduce the operating conditions that underlie the model assumptions. The pressure range is 0 to 6.9 MPa and the temperature is kept constant at °C. Air is added to the oil in different forms and the amount of air varies from about 1 to 5%. Experiments are conducted in three different phases: baseline (without adding air to the oil), lumped air (air added as a pocket of air to the top of the oil column) and distributed air (air is distributed in the oil in the form of small air bubbles). The effect of different forms and amounts of air and various volume change rates are investigated experimentally and it is shown that the value of PC is strongly affected by the volume change rate, the form, and the amount of air. It is also shown that the new model can represent the experimental data with great accuracy. The new proposed “compression and dissolve” model can be considered as a general model of the effective bulk modulus of a mixture of oil and air where it is applicable to any form of a mixture of hydraulic oil and air. However, it is required to identify model parameters using experimental measurements. A method of identifying the model parameters is introduced and the modeling errors are evaluated. An attempt is also made to verify independently the value of some of the parameters. The new proposed model can be used in analyzing pressure variations and improving the accuracy of the simulations in low pressure hydraulic systems. The new method of modeling the air dissolving into the oil can be also used to improve the modeling of cavitation phenomena in hydraulic systems.
6

Comprehensive Modelling Of Gas Condensate Relative Permeability And Its Influence On Field Performance

Calisgan, Huseyin 01 September 2005 (has links) (PDF)
The productivity of most gas condensate wells is reduced significantly due to condensate banking when the bottom hole pressure falls below the dew point. The liquid drop-out in these very high rate gas wells may lead to low recovery problems. The most important parameter for determining condensate well productivity is the effective gas permeability in the near wellbore region, where very high velocities can occur. An understanding of the characteristics of the high-velocity gas-condensate flow and relative permeability data is necessary for accurate forecast of well productivity. In order to tackle this goal, a series of two-phase drainage relative permeability measurements on a moderate permeability North Marmara &ndash / 1 gas well carbonate core plug sample, using a simple synthetic binary retrograde condensate fluid sample were conducted under reservoir conditions which corresponded to near miscible conditions. As a fluid system, the model of methanol/n-hexane system was used as a binary model that exhibits a critical point at ambient conditions. The interfacial tension by means of temperature and the flow rate were varied in the laboratory measurements. The laboratory experiments were repeated for the same conditions of interfacial tension and flow rate at immobile water saturation to observe the influence of brine saturation in gas condensate systems. The laboratory experiment results show a clear trend from the immiscible relative permeability to miscible relative permeability lines with decreasing interfacial tension and increasing velocity. So that, if the interfacial tension is high and the flow velocity is low, the relative permeability functions clearly curved, whereas the relative permeability curves straighten as a linear at lower values of the interfacial tension and higher values of the flow velocity. The presence of the immobile brine saturation in the porous medium shows the same shape of behavior for relative permeability curves with a small difference that is the initial wetting phase saturations in the relative permeability curve shifts to the left in the presence of immobile water saturation. A simple new mathematical model is developed to compute the gas and condensate relative permeabilities as a function of the three-parameter. It is called as condensate number / NK so that the new model is more sensitivity to temperature that represents implicitly the effect of interfacial tension. The new model generated the results were in good agreement with the literature data and the laboratory test results. Additionally, the end point relative permeability data and residual saturations satisfactorily correlate with literature data. The proposed model has fairly good fitness results for the condensate relative permeability curves compared to that of gas case. This model, with typical parameters for gas condensates, can be used to describe the relative permeability behavior and to run a compositional simulation study of a single well to better understand the productivity of the field.
7

Derivation of a Look-Up Table for Trans-Critical Heat Transfer in Water-Cooled Tubes

Zahlan, Hussam Ali Mustafa January 2015 (has links)
This thesis describes the development and validation of a look-up table capable of predicting heat transfer to water flowing vertically upward in a circular tube in the trans-critical pressure range from 19 to 30 MPa. The table was based on an extensive and screened experimental database and its trends were smoothened to remove unrealistic scatter and physically implausible discontinuities. When compared to other prediction methods, the present look-up table approximated the experimental data closer in values and trends. Moreover, unlike existing prediction methods, the table applies not only to normal heat transfer conditions but also to conditions with heat transfer deterioration and enhancement. A separate multi-fluid look-up table for trans-critical heat transfer was also developed, which besides the existing water database incorporated new measurements in carbon dioxide; the latter were collected at the University of Ottawa supercritical flow loop under conditions of interest for the current Super-Critical Water-Cooled Reactor designs, for which few water data were available in the literature. Existing fluid-to-fluid scaling laws were tested and two additional sets of scaling laws were proposed, which are applicable not only to the supercritical pressure region, but also to the high pressure subcritical region. The multi-fluid table is applicable to water at conditions of normal and abnormal heat transfer, but its applicability to model fluids is restricted to the normal heat transfer mode.
8

Continuous flash extraction of alcohols from fermentation broth

Teye, Frederick David 30 March 2009 (has links)
A new method of in situ extraction of alcohols from fermentation broth was investigated. The extraction method exploited the latent advantages of the non-equilibrium phase interaction of the fluid system in the flash tank to effectively recover the alcohol. Carbon dioxide gas ranging from 4.2L/min to 12.6L/min was used to continuously strip 2 and 12% (v/v) ethanol solution in a fermentor with a recycle. Ethanol and water in the stripped gas was recovered by compressing and then flashing into a flash tank that was maintained at 5 to 70bar and 5 to 55oC where two immiscible phases comprising CO2-rich phase (top layer) and H2O-rich phase (bottom layer) were formed. The H2O-rich bottom layer was collected as the Bottoms. The CO2-rich phase was continuously throttled producing a condensate (Tops) as a result of the Joule-Thompson cooling effect. The total ethanol recovered from the extraction scheme was 46.0 to 80% for the fermentor containing 2% (v/v) ethanol and 57 to 89% for the fermentor containing 12% (v/v) ethanol. The concentration of ethanol in the Bottoms ranged from 8.0 to 14.9 %(v/v) for the extraction from the 2 %(v/v) ethanol solution and 40.0 to 53.8 %(v/v) for the 12% (v/v) fermentor ethanol extraction. The Bottoms concentration showed a fourfold increase compared to the feed. The ethanol concentration of the Tops were much higher with the highest at approx. 90% (v/v) ethanol, however the yields were extremely low. Compression work required ranged from 6.4 to 20.1 MJ/kg ethanol recovered from the gas stream in the case of 12% (v/v) ethanol in fermentor. The energy requirement for the 2% (v/v) extraction was 84MJ/kg recovered ethanol. The measured Joule-Thompson cooling effect for the extraction scheme was in the range of 10 to 20% the work of compressing the gas. The lowest measured throttle valve temperature was -47oC at the flash tank conditions of 70bar and 25oC. Optimization of the extraction scheme showed that increasing the temperature of the flash tank reduced the amount of ethanol recovered. Increasing the pressure of the flash tank increased the total ethanol recovered but beyond 45bar it appeared to reduce the yield. The 12.6L/min carbon dioxide flow rate favored the high pressure(70bar) extraction whiles 4.2L/min appeared to favor the low pressure(40bar) extraction. The studies showed that the extraction method could potentially be used to recover ethanol and other fermentation products. / Master of Science
9

Effet d’une orthèse d’avancement mandibulaire neutre combinée à un masque facial et nasal dans le traitement de l’apnée obstructive du sommeil par CPAP

Montpetit, Andrée 06 1900 (has links)
Le traitement de première ligne de l’apnée obstructive du sommeil est l’appareil à pression positive, soit le CPAP, qui est le plus souvent utilisé avec un masque nasal. Certains patients, incapables de tolérer le masque nasal, doivent se tourner vers le masque facial, qui peut parfois requérir une pression supérieure à celle utilisée avec le masque nasal pour éliminer tous les événements respiratoires. Nous supposons que l’ajustement serré du masque facial, dans le but de réduire les fuites, entraîne une pression de recul sur la mandibule; ceci diminuerait le calibre des voies aériennes supérieures, nécessitant donc une pression effective thérapeutique supérieure pour rétablir un passage de l’air. Nos objectifs étaient : 1) de démontrer s’il y avait une différence de pression effective entre le masque nasal et le masque facial, 2) de quantifier la fuite entre les deux masques, 3) d’évaluer l’effet d’une orthèse de rétention mandibulaire neutre (OMN), qui empêche le recul mandibulaire, sur la pression effective des deux masques et 4) d’évaluer s’il existait un lien entre la céphalométrie et les réponses variables des individus. Méthodologie : Lors de cette étude expérimentale croisée, huit sujets (2 femmes, 6 hommes) avec une moyenne d’âge de 56,3ans [33ans-65ans] ont reçu un examen orthodontique complet incluant une radiographie céphalométrique latérale. Ils ont ensuite passé deux nuits de polysomnographie au laboratoire du sommeil en protocole « split-night » où les deux masques ont été portés, seuls, la première nuit, et avec l’OMN, la deuxième nuit. Résultats : Nous avons trouvé que la pression effective thérapeutique était supérieure avec le masque facial comparativement au masque nasal de manière statistiquement significative. Nous avons observé une fuite supérieure avec le masque nasal, ce qui permet de dire que la fuite n’explique probablement pas cette différence de pression entre les deux masques. L’OMN n’a pas donné d’effet statistiquement significatif lorsque combinée au masque nasal, mais il aurait probablement été possible de trouver un effet positif avec le masque facial si le Bi-PAP avait été inclus dans le protocole de recherche. Conclusion : Nos résultats ne permettent pas de confirmer le rôle du recul mandibulaire, causé par la force exercée avec le masque facial, dans l’obtention de pressions supérieures avec ce masque, mais nous ne pouvons toutefois pas éliminer l’hypothèse. Les résultats suggèrent également que ce phénomène est peut-être plus fréquent qu’on ne le croit et qu’il pourrait y avoir un lien avec certains facteurs anatomiques individuels. / The first line of treatment for obstructive sleep apnea is continuous positive airway pressure or CPAP used via a nasal mask. Some patients, unable to tolerate the nasal mask, have to turn to the facial mask, which sometimes requires a superior level of pressure to eliminate all the respiratory events. We believe that the force applied on the chin from a tight adjustment of the facial mask may retrude the mandible and diminish the upper airway caliber. Our objectives for this study were to: 1) demonstrate that a difference of effective therapeutic pressure between the nasal and facial masks does exist, 2) quantify the leaks associated with each mask, 3) evaluate the effect of a neutral mandibular appliance (NMA), that prevents the retrusion of the mandible, on the effective pressure of both masks and 4) evaluate if a link between the cephalometric values and varied individual responses to both masks exists. Methods: Eight subjects (2 females, 6 males) mean age 56.3 years (33-65y) participated in the cross-over design pilot study. All subjects underwent a complete orthodontic examination including lateral cephalometric radiograph before spending two nights in a sleep laboratory for a polysomnography in split-night protocol, where both mask were worn alone on the first night and with the NMA on the second night. Results: We found that the therapeutic effective pressure was higher with the facial mask compared to the nasal mask, and this difference was statistically significant. The leak was more elevated with the nasal mask, thus eliminating this factor as a probable cause of the higher pressure with the facial mask. The NMA did not have any statistically significant effect on both masks; however a possible positive effect might be seen if the Bi-level PAP was included in the protocol. Conclusion: Our results cannot confirm the role of the retrusion of the mandible, caused by the force applied by the facial mask, in the necessity of a superior level of pressure with that mask, but we cannot eliminate that possibility either. Our results suggest that this phenomenon is more frequent that we may think and that a link with some anatomical factors may exist.
10

Effet d’une orthèse d’avancement mandibulaire neutre combinée à un masque facial et nasal dans le traitement de l’apnée obstructive du sommeil par CPAP

Montpetit, Andrée 06 1900 (has links)
Le traitement de première ligne de l’apnée obstructive du sommeil est l’appareil à pression positive, soit le CPAP, qui est le plus souvent utilisé avec un masque nasal. Certains patients, incapables de tolérer le masque nasal, doivent se tourner vers le masque facial, qui peut parfois requérir une pression supérieure à celle utilisée avec le masque nasal pour éliminer tous les événements respiratoires. Nous supposons que l’ajustement serré du masque facial, dans le but de réduire les fuites, entraîne une pression de recul sur la mandibule; ceci diminuerait le calibre des voies aériennes supérieures, nécessitant donc une pression effective thérapeutique supérieure pour rétablir un passage de l’air. Nos objectifs étaient : 1) de démontrer s’il y avait une différence de pression effective entre le masque nasal et le masque facial, 2) de quantifier la fuite entre les deux masques, 3) d’évaluer l’effet d’une orthèse de rétention mandibulaire neutre (OMN), qui empêche le recul mandibulaire, sur la pression effective des deux masques et 4) d’évaluer s’il existait un lien entre la céphalométrie et les réponses variables des individus. Méthodologie : Lors de cette étude expérimentale croisée, huit sujets (2 femmes, 6 hommes) avec une moyenne d’âge de 56,3ans [33ans-65ans] ont reçu un examen orthodontique complet incluant une radiographie céphalométrique latérale. Ils ont ensuite passé deux nuits de polysomnographie au laboratoire du sommeil en protocole « split-night » où les deux masques ont été portés, seuls, la première nuit, et avec l’OMN, la deuxième nuit. Résultats : Nous avons trouvé que la pression effective thérapeutique était supérieure avec le masque facial comparativement au masque nasal de manière statistiquement significative. Nous avons observé une fuite supérieure avec le masque nasal, ce qui permet de dire que la fuite n’explique probablement pas cette différence de pression entre les deux masques. L’OMN n’a pas donné d’effet statistiquement significatif lorsque combinée au masque nasal, mais il aurait probablement été possible de trouver un effet positif avec le masque facial si le Bi-PAP avait été inclus dans le protocole de recherche. Conclusion : Nos résultats ne permettent pas de confirmer le rôle du recul mandibulaire, causé par la force exercée avec le masque facial, dans l’obtention de pressions supérieures avec ce masque, mais nous ne pouvons toutefois pas éliminer l’hypothèse. Les résultats suggèrent également que ce phénomène est peut-être plus fréquent qu’on ne le croit et qu’il pourrait y avoir un lien avec certains facteurs anatomiques individuels. / The first line of treatment for obstructive sleep apnea is continuous positive airway pressure or CPAP used via a nasal mask. Some patients, unable to tolerate the nasal mask, have to turn to the facial mask, which sometimes requires a superior level of pressure to eliminate all the respiratory events. We believe that the force applied on the chin from a tight adjustment of the facial mask may retrude the mandible and diminish the upper airway caliber. Our objectives for this study were to: 1) demonstrate that a difference of effective therapeutic pressure between the nasal and facial masks does exist, 2) quantify the leaks associated with each mask, 3) evaluate the effect of a neutral mandibular appliance (NMA), that prevents the retrusion of the mandible, on the effective pressure of both masks and 4) evaluate if a link between the cephalometric values and varied individual responses to both masks exists. Methods: Eight subjects (2 females, 6 males) mean age 56.3 years (33-65y) participated in the cross-over design pilot study. All subjects underwent a complete orthodontic examination including lateral cephalometric radiograph before spending two nights in a sleep laboratory for a polysomnography in split-night protocol, where both mask were worn alone on the first night and with the NMA on the second night. Results: We found that the therapeutic effective pressure was higher with the facial mask compared to the nasal mask, and this difference was statistically significant. The leak was more elevated with the nasal mask, thus eliminating this factor as a probable cause of the higher pressure with the facial mask. The NMA did not have any statistically significant effect on both masks; however a possible positive effect might be seen if the Bi-level PAP was included in the protocol. Conclusion: Our results cannot confirm the role of the retrusion of the mandible, caused by the force applied by the facial mask, in the necessity of a superior level of pressure with that mask, but we cannot eliminate that possibility either. Our results suggest that this phenomenon is more frequent that we may think and that a link with some anatomical factors may exist.

Page generated in 0.0941 seconds