• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional characterisation of the TCTP gene : a role in regulation of organ growth / Caractérisation fonctionnelle du gène TCTP : rôle dans la régulation de la croissance d’organes

Wippermann, Barbara 07 June 2013 (has links)
La croissance d’un organisme multicellulaire pour atteindre une taille bien définie, nécessite une coordination de la prolifération cellulaire, de l’expansion et de la différentiation cellulaire ainsi que de la mort cellulaire. Ces processus sont sous l’influence de l’état nutritionnel de l’organisme, les conditions de son environnement et des signaux hormonaux. Translationally controlled tumor protein (TCTP) est un facteur essentiel à la croissance des plantes et des animaux. La protéine TCTP de plante contrôle la croissance mitotique, tandis que la protéine TCTP animale contrôle la croissance mitotique et post-mitotique. Une voie importante dans la régulation de la croissance en réponse aux nutriments est la voie Target of Rapamycin (TOR). Chez la Drosophile, il a été montré que dTCTP serait un régulateur positif en amont de TOR. Au cours de ma thèse, j’ai étudié le lien entre TCTP et la voie TOR, afin de savoir si, comme chez les animaux, AtTCTP agit en amont de la voie TOR pour contrôler la croissance des organes. Afin de savoir si la voie TCTP était liée à l’état nutritionnel, j’ai recherché l’impact du milieu de culture sur la létalité de la mutation tctp. J’ai ensuite caractérisé l’impact de la mutation tctp sur le transport et l’homéostasie de l’hormone auxine. J’ai enfin analysé pourquoi TCTP de plante ne contrôle pas la croissance post-mitotique par expansion cellulaire, contrairement à TCTP animale. Les données de la littérature montrent que chez les animaux TCTP est un activateur positif en amont de la voie TOR. Chez la plante Arabidopsis thaliana, mes données d’interactions génétiques sont en faveur d’un modèle dans lequel AtTCTP agit indépendamment de la voie TOR, contrairement de ce qu’il a été proposé chez les animaux. Chez les plantes, la perte de fonction de TCTP est associée à un retard du développement embryonnaire et à la mort. Cette létalité peut être complémentée par sauvetage des embryons sur du milieu riche en nutriments. J’ai montré que l’ajout de sucrose ou de glutamine dans le milieu de sauvetage des embryons tctp est nécessaire à leur développement. Ces données suggèrent qu’in vitro, AtTCTP n’est pas nécessaire à l’approvisionnement et à l’utilisation des nutriments sucrose, glucose ou glutamine. Dans leur ensemble, ces résultats réévaluent le rôle du régulateur de croissance TCTP en montrant que le gène AtTCTP régule la croissance mitotique indépendamment de la voie TOR et des voies de signalisation liées aux nutriments. L’observation des flux d’auxine en suivant la localisation de PIN1-GFP dans les embryons et les inflorescences du mutant tctp ne montre aucune altération par rapport au phénotype sauvage. De même, l’homeostasie de l’auxine, suivie à l’aide du rapporteur DR5::GFP n’est pas altérée dans les embryons tctp. Ceci suggère que le défaut de croissance du mutant tctp n’est pas lié à une altération du flux ou de l’homéostasie de l’auxine. La protéine TCTP de plante ne contrôle pas la croissance post-mitotique, contrairement à la protéine TCTP animale. J’ai réalisé un échange de domaines protéiques entre AtTCTP et Drosophila dTCTP. Le but était d’identifier les domaines protéiques de la protéine TCTP animale qui permettent la croissance post-mitotique. La plupart des protéines chimères étaient instables dans la Drosophile. Afin de comprendre pourquoi, j’ai réalisé du modelage par homologie et j’ai discuté la structure des chimères dans ma thèse.L’ensemble de mes résultats permet de mieux comprendre la fonction de TCTP chez les végétaux, en montrant que cette fonction s’exerce indépendamment de la voie TOR. / The growth of a multicellular organism and its size determination require the tight regulation of cell proliferation, cell differentiation, cell growth and apoptosis. These processes are influenced by the nutritional state of the organism, its environmental conditions and hormonal signals. Translationally controlled tumor protein (TCTP) is an essential regulator of growth in plants and animals. In plants it controls mitotic growth, whereas in animals, it controls mitotic and post-mitotic growth. One of the important pathways involved in the control of growth in response to nutrients is the Target of Rapamycin (TOR) pathway. In Drosophila, dTCTP was proposed to act a positive regulator upstream of TOR, although this role remains a matter of debate in the animal field.During the past 3 years of my PhD. thesis, I addressed the question whether plant TCTP acts upstream of TOR to control organ growth. I studied the impact of nutrient availability and hormones on TCTP role to control growth in plants and vice versa. Finally, I examined why plant TCTP does not control post-mitotic cell expansion growth, conversely to animal TCTP using a structure-function approach.In animals, TCTP was proposed to act as a positive activator upstream of the TOR pathway. In plants, my data support a model in which AtTCTP acts independently from the plant TOR pathway, thus in contrast to what has been proposed in animals. TCTP loss of function leads to delay of embryo development and death. Nutrient supplement rescues this embryos lethality. First, I demonstrate that embryos grown on nutrients lacking sucrose or glutamine fail to develop correctly. My data demonstrate that in vitro AtTCTP is not essential to the uptake, the use of and the response to the nutrients glucose, sucrose or glutamine. Taken together, these results reevaluate the role of AtTCTP as a growth regulator controlling mitotic growth independently from the TOR pathway and likely from nutrient related signaling pathways. Interestingly, my data also show that AtTCTP controls growth independently from auxin flux or homeostasis and that auxin-induced growth can occur without TCTP. To address why plant TCTP do not control post-mitotic growth conversely to animal counterpart, I performed protein domain swaps and created chimera proteins between Arabidopsis AtTCTP and Drosophila dTCTP. The rational was to identify protein domains that differentiate plant and animal TCTPs with regard to post-mitotic growth control. Most of chimera proteins were instable and I was unable to complement tctp loss of function in Drosophila. I performed a structure based modeling to understand this phenotype and the outcome is discussed in my PhD thesis.Altogether my results improve the understanding of plant morphogenesis by reevaluating the role of the central growth regulator TCTP.

Page generated in 0.0604 seconds