Spelling suggestions: "subject:"crop forecasting"" "subject:"drop forecasting""
1 |
Information systems for regional sugar cane production forecasting and localised yield estimation: a Thailand perspectiveOnpraphai, Thaworn, n/a January 2004 (has links)
Sugar is an important global agricultural commodity and a significant input to the
advanced industrialised world. Annual average global sugar production is around 120
million tonnes, with consumption around 118 million tonnes. Sugar is produced under
a broad range of climatic conditions in some 120 countries and is one of the most
heavily traded agricultural commodities (FAO, 2001). Plants produce sugar as a
storehouse of energy that is used as required. Approximately 70% of sugar is
produced from sugar cane while the remaining 30% is produced from sugar beet
(Sugar Knowledge International, 2001).
Thailand's cane and sugar industry is now one of the major sources of foreign income
for the country. The value of sugar exports (around 35 billion baht or AUD $1.5
billion per annum) ranks among the top ten exported commodities of the Thai
economy. Approximately 9.2% of annual global sugar production is exported from
Thailand (WTO, 2001).
The sugar industry is extremely complex and comprises individual links and
components in the supply and demand chain that are more delicately in balance than
with most other commodity based industries. Thailand's sugar production has been
characterized by greater extremes of variability than in most other sugar producing
countries. A unique combination of pests, disease, climate, soils, problems with plant
available moisture and the low technology basis of crop management has increased
production risk and uncertainty for the crop. Total tonnage of cane and sugar is
notoriously difficult to predict during the growing season and for a mature crop before
the harvest.
Accordingly, the focus of this research is on the development and testing of methods,
algorithms, procedures and output products for Sugar Cane Crop Forecasting and
Yield Mapping. The resulting spatial and temporal information tools have the potential
to provide the basis of a commercially deployable decision support system for
Thailand's sugar industry.
The scope of this thesis encompasses several levels within a geographical hierarchy of
scales; from regional, district, farm, and plot within a study area in northeastern
Thailand. Crop forecasting at regional level will reduce production risk uncertainty
while yield mapping and yield estimation at local, farm and plot scales will enable
productivity to be improved by identifying, diagnosing the cause of and reducing
yield variability.
The research has three main objectives. These are to:
Develop statistical analysis procedures and empirical algorithms expressing the
relationship between yield potential and spectral response of sugar cane yield as a
basis for mapping, monitoring, modeling, forecasting and management of sugar
production in Thailand.
Evaluate the validity of a technology based versus conventional approach to crop
forecasting and yield mapping, commencing with a series of testable null-hypotheses
and culminating in procedures to calibrate and validate empirical
models against verifiable production records. Outcomes are used to review and
evaluate existing and potential future approaches to regional crop forecasting,
localised yield mapping and yield estimation tools for operational use within
Thailand's sugar industry.
Identify, evaluate and establish performance benchmarks in relation to the
practicality, accuracy, timeliness, cost effectiveness and value proposition of a
satellite based versus conventional approach to crop forecasting and yield
mapping.
The methodology involved time series analysis of recorded sugar cane yields and
production outcomes paired with spectral response statistics of crops derived from
satellite imagery and seasonal rainfall records over a three year period within four
provinces, forty five component districts and 120 representative farms.
Spectral statistics were derived fiom raw multi-spectral satellite imagery (multitemporal
SPOT- VI at regional scale and Landsat 7 ETM+ imagery at local scale)
acquired during the 1999 to 2001 sugar cane seasons. Crop area and production
statistics at regional scale were compiled and furnished by the provincial sugar mill
and verified through government agencies within Thailand. Selective cutting at
sample sites within nominated fields owned by collaborating growers was undertaken
to validate localised differences in productivity and to facilitate yield variance
mapping.
Acquisition, processing, analysis and statistical modeling of remotely sensed satellite
spectral data, rainfall records and production outcomes were accomplished using an
empirical approach. Resulting crop production forecasting algorithms were
systematically evaluated for reliability by assessing accuracy, spatial and temporal
variability. Long term rainfall and district sugar cane yield and production records
were used to account for district and season specific differences between estimated
and recorded yields, to generate error probability functions and to improve the
accuracy and applicability of empirical models under more extreme conditions.
Limitations on finding and length of records constrained the number of seasons and
the area for which satellite imagery with contrasting levels of spatial and spectral
resolution could be acquired. The absence of verifiable long term production records
combined with limitations on the duration and area able to be covered by field trips
meant that time series analysis of paired data was necessarily constrained to a three
year period of record coinciding with the author's period of candidature. Accordingly,
although a comprehensive set of well correlated district and month specific yield
forecasting algorithms was able to be developed, temporal restrictions on data
availability constrained the extent to which they could be subjected to thorough
accuracy and reliability analysis and extended with confidence down to farm and field
scale.
A variety of approaches, using different parameter combinations and threshold values,
was used to combine individual districts and component farms into coherent groups to
overcome temporal data constraints and to generate more robust production
forecasting algorithms, albeit with slightly lower levels of apparent accuracy and
reliability. The procedures adopted to optimise these district groupings are
systematically explained. Component differences in terrain, biophysical conditions
and management approaches between district groupings are used to explain
differences in production outcomes and to account for apparent differences between
forecast versus actual yields between districts both within and between different
groups.
The outcomes of this research - particularly the data acquisition and analysis
procedures, empirical modeling, error assessment and adjustment techniques, and the
optimisation procedures used to facilitate grouping of districts - provide a practical
basis for the deployment of an operational sugar cane production forecasting and yield
mapping information system to facilitate planning and logistical management of
production, harvesting, transportation, processing, domestic marketing and export of
sugar from northeastern Thailand. At the local and farm level, yield maps and plot
based yield estimates will assist users to improve productivity by recognising,
identiwing and responding to potential causes of within and between field spatial
variability.
However, before such an information system can be confidently deployed, additional
resources will be required to obtain paired production records, spectral data fiom
satellite imagery and biophysical input data over a longer period to ensure that the
empirical models are operationally robust and to validate their accuracy under a wider
range of conditions by comparing forecasts with actual outcomes over larger areas
during the next few seasons.
|
2 |
Avaliação da dinâmica espectro-temporal visando o mapeamento da soja e arroz irrigado no Rio Grande do Sul / Evaluation of dynamic spectral-temporal targeting mapping of soybean and irrigated rice in Rio Grande do SulMengue, Vagner Paz January 2013 (has links)
Uma das atividades mais relevantes para a economia brasileira é a agricultura. Entre os produtos de maior importância no cenário agrícola nacional, estão a soja e o arroz, os quais representam uma grande parcela da produção. Somente o Estado do Rio Grande do Sul é responsável por aproximadamente 67% da produção nacional de arroz e 10% de soja (IBGE, 2012). Portanto, informações confiáveis sobre a produção agrícola são relevantes para o desenvolvimento do setor e o desenvolvimento de metodologias capazes de auxiliar no monitoramento das áreas agrícolas torna-se peça importante na geração de dados confiáveis e com maior rapidez de obtenção. Desta forma, o objetivo deste trabalho foi desenvolver uma metodologia de baixo custo para a execução do mapeamento da área cultivada de arroz irrigado e soja, em escala municipal e estadual, baseado na análise do comportamento espectro-temporal de índices de vegetação de imagens de satélite de alta resolução temporal. O estudo foi realizado no Estado do Rio Grande do Sul, abrangendo os 497 municípios no ano safra 2011/2012. Para realizar o estudo, foram utilizadas imagens multitemporais do sensor MODIS, índices de vegetação EVI e NDVI. Foi aplicado o modelo HAND para gerar as áreas de inundação, as quais foram utilizadas para discriminar a cultura do arroz irrigado de outras culturas, especialmente a soja. Para avaliar os resultados foram utilizados como dados de referência, os dados coletados a campo, dados de área cultivada do IBGE e dados do mapeamento gerados a partir de imagens do satélite RapidEye. Os resultados mostraram que a metodologia proposta foi satisfatória, com valores médios do índice Kappa de 0,90 para a cultura de arroz irrigado e de 0,84 para a soja. Não houve diferença significativa entre as estimativas de área cultivada utilizando os dados EVI e NDVI para ambas as culturas. A utilização do Modelo HAND para discriminar o arroz irrigado de outros cultivos, mostrou-se muito eficiente, separando as áreas de várzea, que são mais aptas para o cultivo de arroz irrigado. Apesar dos resultados terem sido considerados como satisfatórios alguns municípios apresentaram problemas de subestimação ou superestimação quando foram comparados com os dados oficiais do IBGE. Esses problemas podem estar relacionados ao caráter subjetivo de aquisição de dados por parte do IBGE e também o fato de ter sido utilizada para a validação dos dados da safra 2011/2012 a média das últimas três safras, podendo desta maneira ter fragilizado ou comprometido os resultados para alguns municípios. Portanto, técnicas de sensoriamento remoto e geoprocessamento podem ser úteis no auxilio dos atuais métodos de monitoramento e mapeamento de culturas agrícolas, melhorando as estatísticas oficiais do arroz irrigado e soja. / One of the most relevant activities for the Brazilian economy is agriculture. Among the products of greatest importance in the national agricultural, are soybeans and rice, which represent a large portion of the production. Only the State of Rio Grande do Sul is responsible for approximately 67% of the national rice production and 10% of soybean (IBGE, 2012). Therefore, reliable information on agricultural production are relevant to the development of the sector and the development of methodologies capable of assist in the monitoring of agricultural areas becomes important part in the generation of reliable data and faster of obtaining. Thus, the objective of this work was to develop a methodology of low cost to implement the mapping of acreage irrigated rice and soybeans, at the municipal and state levels, based on the analysis of the spectral-temporal behavior of vegetation indices from satellite images high temporal resolution. The study was conducted in the state of Rio Grande do Sul, covering 497 municipalities in crop year 2011/2012. To conduct the study, images were used multitemporal MODIS vegetation indices EVI and NDVI. HAND model was applied to generate the inundation areas, which were used to discriminate the rice culture of other crops, especially soybeans. To evaluate the results were used as reference data, data collected in the field, the cultivated area data from the IBGE and mapping data generated from satellite images RapidEye. The results show that the proposed method was satisfactory, with mean values of Kappa 0.90 for irrigated rice and 0.84 for soybeans. There was no significant difference between the estimates of acreage using EVI and NDVI data for both crops. The use of the HAND model to discriminate irrigated rice from other crops, was very efficient, separating the lowland areas, which are more suitable for the cultivation of irrigated rice. Although the results were considered satisfactory as some municipalities had problems underestimation or overestimation when they were compared with the official data. These problems may be related to the subjective nature of data acquisition by the IBGE and the fact of having been used for the validation of data from 2011/2012 season the average of the last three years, and may in this way be weakened or compromised results for some municipalities. Therefore, techniques of remote sensing and GIS can be useful in the aid of the current methods of monitoring and mapping of agricultural crops, improving the official statistics of irrigated rice and soybeans.
|
3 |
Avaliação da dinâmica espectro-temporal visando o mapeamento da soja e arroz irrigado no Rio Grande do Sul / Evaluation of dynamic spectral-temporal targeting mapping of soybean and irrigated rice in Rio Grande do SulMengue, Vagner Paz January 2013 (has links)
Uma das atividades mais relevantes para a economia brasileira é a agricultura. Entre os produtos de maior importância no cenário agrícola nacional, estão a soja e o arroz, os quais representam uma grande parcela da produção. Somente o Estado do Rio Grande do Sul é responsável por aproximadamente 67% da produção nacional de arroz e 10% de soja (IBGE, 2012). Portanto, informações confiáveis sobre a produção agrícola são relevantes para o desenvolvimento do setor e o desenvolvimento de metodologias capazes de auxiliar no monitoramento das áreas agrícolas torna-se peça importante na geração de dados confiáveis e com maior rapidez de obtenção. Desta forma, o objetivo deste trabalho foi desenvolver uma metodologia de baixo custo para a execução do mapeamento da área cultivada de arroz irrigado e soja, em escala municipal e estadual, baseado na análise do comportamento espectro-temporal de índices de vegetação de imagens de satélite de alta resolução temporal. O estudo foi realizado no Estado do Rio Grande do Sul, abrangendo os 497 municípios no ano safra 2011/2012. Para realizar o estudo, foram utilizadas imagens multitemporais do sensor MODIS, índices de vegetação EVI e NDVI. Foi aplicado o modelo HAND para gerar as áreas de inundação, as quais foram utilizadas para discriminar a cultura do arroz irrigado de outras culturas, especialmente a soja. Para avaliar os resultados foram utilizados como dados de referência, os dados coletados a campo, dados de área cultivada do IBGE e dados do mapeamento gerados a partir de imagens do satélite RapidEye. Os resultados mostraram que a metodologia proposta foi satisfatória, com valores médios do índice Kappa de 0,90 para a cultura de arroz irrigado e de 0,84 para a soja. Não houve diferença significativa entre as estimativas de área cultivada utilizando os dados EVI e NDVI para ambas as culturas. A utilização do Modelo HAND para discriminar o arroz irrigado de outros cultivos, mostrou-se muito eficiente, separando as áreas de várzea, que são mais aptas para o cultivo de arroz irrigado. Apesar dos resultados terem sido considerados como satisfatórios alguns municípios apresentaram problemas de subestimação ou superestimação quando foram comparados com os dados oficiais do IBGE. Esses problemas podem estar relacionados ao caráter subjetivo de aquisição de dados por parte do IBGE e também o fato de ter sido utilizada para a validação dos dados da safra 2011/2012 a média das últimas três safras, podendo desta maneira ter fragilizado ou comprometido os resultados para alguns municípios. Portanto, técnicas de sensoriamento remoto e geoprocessamento podem ser úteis no auxilio dos atuais métodos de monitoramento e mapeamento de culturas agrícolas, melhorando as estatísticas oficiais do arroz irrigado e soja. / One of the most relevant activities for the Brazilian economy is agriculture. Among the products of greatest importance in the national agricultural, are soybeans and rice, which represent a large portion of the production. Only the State of Rio Grande do Sul is responsible for approximately 67% of the national rice production and 10% of soybean (IBGE, 2012). Therefore, reliable information on agricultural production are relevant to the development of the sector and the development of methodologies capable of assist in the monitoring of agricultural areas becomes important part in the generation of reliable data and faster of obtaining. Thus, the objective of this work was to develop a methodology of low cost to implement the mapping of acreage irrigated rice and soybeans, at the municipal and state levels, based on the analysis of the spectral-temporal behavior of vegetation indices from satellite images high temporal resolution. The study was conducted in the state of Rio Grande do Sul, covering 497 municipalities in crop year 2011/2012. To conduct the study, images were used multitemporal MODIS vegetation indices EVI and NDVI. HAND model was applied to generate the inundation areas, which were used to discriminate the rice culture of other crops, especially soybeans. To evaluate the results were used as reference data, data collected in the field, the cultivated area data from the IBGE and mapping data generated from satellite images RapidEye. The results show that the proposed method was satisfactory, with mean values of Kappa 0.90 for irrigated rice and 0.84 for soybeans. There was no significant difference between the estimates of acreage using EVI and NDVI data for both crops. The use of the HAND model to discriminate irrigated rice from other crops, was very efficient, separating the lowland areas, which are more suitable for the cultivation of irrigated rice. Although the results were considered satisfactory as some municipalities had problems underestimation or overestimation when they were compared with the official data. These problems may be related to the subjective nature of data acquisition by the IBGE and the fact of having been used for the validation of data from 2011/2012 season the average of the last three years, and may in this way be weakened or compromised results for some municipalities. Therefore, techniques of remote sensing and GIS can be useful in the aid of the current methods of monitoring and mapping of agricultural crops, improving the official statistics of irrigated rice and soybeans.
|
4 |
Avaliação da dinâmica espectro-temporal visando o mapeamento da soja e arroz irrigado no Rio Grande do Sul / Evaluation of dynamic spectral-temporal targeting mapping of soybean and irrigated rice in Rio Grande do SulMengue, Vagner Paz January 2013 (has links)
Uma das atividades mais relevantes para a economia brasileira é a agricultura. Entre os produtos de maior importância no cenário agrícola nacional, estão a soja e o arroz, os quais representam uma grande parcela da produção. Somente o Estado do Rio Grande do Sul é responsável por aproximadamente 67% da produção nacional de arroz e 10% de soja (IBGE, 2012). Portanto, informações confiáveis sobre a produção agrícola são relevantes para o desenvolvimento do setor e o desenvolvimento de metodologias capazes de auxiliar no monitoramento das áreas agrícolas torna-se peça importante na geração de dados confiáveis e com maior rapidez de obtenção. Desta forma, o objetivo deste trabalho foi desenvolver uma metodologia de baixo custo para a execução do mapeamento da área cultivada de arroz irrigado e soja, em escala municipal e estadual, baseado na análise do comportamento espectro-temporal de índices de vegetação de imagens de satélite de alta resolução temporal. O estudo foi realizado no Estado do Rio Grande do Sul, abrangendo os 497 municípios no ano safra 2011/2012. Para realizar o estudo, foram utilizadas imagens multitemporais do sensor MODIS, índices de vegetação EVI e NDVI. Foi aplicado o modelo HAND para gerar as áreas de inundação, as quais foram utilizadas para discriminar a cultura do arroz irrigado de outras culturas, especialmente a soja. Para avaliar os resultados foram utilizados como dados de referência, os dados coletados a campo, dados de área cultivada do IBGE e dados do mapeamento gerados a partir de imagens do satélite RapidEye. Os resultados mostraram que a metodologia proposta foi satisfatória, com valores médios do índice Kappa de 0,90 para a cultura de arroz irrigado e de 0,84 para a soja. Não houve diferença significativa entre as estimativas de área cultivada utilizando os dados EVI e NDVI para ambas as culturas. A utilização do Modelo HAND para discriminar o arroz irrigado de outros cultivos, mostrou-se muito eficiente, separando as áreas de várzea, que são mais aptas para o cultivo de arroz irrigado. Apesar dos resultados terem sido considerados como satisfatórios alguns municípios apresentaram problemas de subestimação ou superestimação quando foram comparados com os dados oficiais do IBGE. Esses problemas podem estar relacionados ao caráter subjetivo de aquisição de dados por parte do IBGE e também o fato de ter sido utilizada para a validação dos dados da safra 2011/2012 a média das últimas três safras, podendo desta maneira ter fragilizado ou comprometido os resultados para alguns municípios. Portanto, técnicas de sensoriamento remoto e geoprocessamento podem ser úteis no auxilio dos atuais métodos de monitoramento e mapeamento de culturas agrícolas, melhorando as estatísticas oficiais do arroz irrigado e soja. / One of the most relevant activities for the Brazilian economy is agriculture. Among the products of greatest importance in the national agricultural, are soybeans and rice, which represent a large portion of the production. Only the State of Rio Grande do Sul is responsible for approximately 67% of the national rice production and 10% of soybean (IBGE, 2012). Therefore, reliable information on agricultural production are relevant to the development of the sector and the development of methodologies capable of assist in the monitoring of agricultural areas becomes important part in the generation of reliable data and faster of obtaining. Thus, the objective of this work was to develop a methodology of low cost to implement the mapping of acreage irrigated rice and soybeans, at the municipal and state levels, based on the analysis of the spectral-temporal behavior of vegetation indices from satellite images high temporal resolution. The study was conducted in the state of Rio Grande do Sul, covering 497 municipalities in crop year 2011/2012. To conduct the study, images were used multitemporal MODIS vegetation indices EVI and NDVI. HAND model was applied to generate the inundation areas, which were used to discriminate the rice culture of other crops, especially soybeans. To evaluate the results were used as reference data, data collected in the field, the cultivated area data from the IBGE and mapping data generated from satellite images RapidEye. The results show that the proposed method was satisfactory, with mean values of Kappa 0.90 for irrigated rice and 0.84 for soybeans. There was no significant difference between the estimates of acreage using EVI and NDVI data for both crops. The use of the HAND model to discriminate irrigated rice from other crops, was very efficient, separating the lowland areas, which are more suitable for the cultivation of irrigated rice. Although the results were considered satisfactory as some municipalities had problems underestimation or overestimation when they were compared with the official data. These problems may be related to the subjective nature of data acquisition by the IBGE and the fact of having been used for the validation of data from 2011/2012 season the average of the last three years, and may in this way be weakened or compromised results for some municipalities. Therefore, techniques of remote sensing and GIS can be useful in the aid of the current methods of monitoring and mapping of agricultural crops, improving the official statistics of irrigated rice and soybeans.
|
Page generated in 0.1 seconds