• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parallel and Sequential Monte Carlo Methods with Applications

Gareth Evans Unknown Date (has links)
Monte Carlo simulation methods are becoming increasingly important for solving difficult optimization problems. Monte Carlo methods are often used when it is infeasible to determine an exact result via a deterministic algorithm, such as with NP or #P problems. Several recent Monte Carlo techniques employ the idea of importance sampling; examples include the Cross-Entropy method and sequential importance sampling. The Cross-Entropy method is a relatively new Monte Carlo technique that has been successfully applied to a wide range of optimization and estimation problems since introduced by R. Y. Rubinstein in 1997. However, as the problem size increases, the Cross-Entropy method, like many heuristics, can take an exponentially increasing amount of time before it returns a solution. For large problems this can lead to an impractical amount of running time. A main aim of this thesis is to develop the Cross-Entropy method for large-scale parallel computing, allowing the running time of a Cross-Entropy program to be significantly reduced by the use of additional computing resources. The effectiveness of the parallel approach is demonstrated via a number of numerical studies. A second aim is to apply the Cross-Entropy method and sequential importance sampling to biological problems, in particular the multiple change-point problem for DNA sequences. The multiple change-point problem in a general setting is the problem of identifying, given a particular sequence of numbers/characters, a point along that sequence where some property of interest changes abruptly. An example in a biological setting, is identifying points in a DNA sequence where there is a significant change in the proportion of the nucleotides G and C with respect to the nucleotides A and T. We show that both sequential importance sampling and the Cross-Entropy approach yield significant improvements in time and/or accuracy over existing techniques.
2

Estimation de la disponibilité par simulation, pour des systèmes incluant des contraintes logistiques / Availability estimation by simulations for systems including logistics

Rai, Ajit 09 July 2018 (has links)
L'analyse des FDM (Reliability, Availability and Maintainability en anglais) fait partie intégrante de l'estimation du coût du cycle de vie des systèmes ferroviaires. Ces systèmes sont hautement fiables et présentent une logistique complexe. Les simulations Monte Carlo dans leur forme standard sont inutiles dans l'estimation efficace des paramètres des FDM à cause de la problématique des événements rares. C'est ici que l'échantillonnage préférentiel joue son rôle. C'est une technique de réduction de la variance et d'accélération de simulations. Cependant, l'échantillonnage préférentiel inclut un changement de lois de probabilité (changement de mesure) du modèle mathématique. Le changement de mesure optimal est inconnu même si théoriquement il existe et fournit un estimateur avec une variance zéro. Dans cette thèse, l'objectif principal est d'estimer deux paramètres pour l'analyse des FDM: la fiabilité des réseaux statiques et l'indisponibilité asymptotique pour les systèmes dynamiques. Pour ce faire, la thèse propose des méthodes pour l'estimation et l'approximation du changement de mesure optimal et l'estimateur final. Les contributions se présentent en deux parties: la première partie étend la méthode de l'approximation du changement de mesure de l'estimateur à variance zéro pour l'échantillonnage préférentiel. La méthode estime la fiabilité des réseaux statiques et montre l'application à de réels systèmes ferroviaires. La seconde partie propose un algorithme en plusieurs étapes pour l'estimation de la distance de l'entropie croisée. Cela permet d'estimer l'indisponibilité asymptotique pour les systèmes markoviens hautement fiables avec des contraintes logistiques. Les résultats montrent une importante réduction de la variance et un gain par rapport aux simulations Monte Carlo. / RAM (Reliability, Availability and Maintainability) analysis forms an integral part in estimation of Life Cycle Costs (LCC) of passenger rail systems. These systems are highly reliable and include complex logistics. Standard Monte-Carlo simulations are rendered useless in efficient estimation of RAM metrics due to the issue of rare events. Systems failures of these complex passenger rail systems can include rare events and thus need efficient simulation techniques. Importance Sampling (IS) are an advanced class of variance reduction techniques that can overcome the limitations of standard simulations. IS techniques can provide acceleration of simulations, meaning, less variance in estimation of RAM metrics in same computational budget as a standard simulation. However, IS includes changing the probability laws (change of measure) that drive the mathematical models of the systems during simulations and the optimal IS change of measure is usually unknown, even though theroretically there exist a perfect one (zero-variance IS change of measure). In this thesis, we focus on the use of IS techniques and its application to estimate two RAM metrics : reliability (for static networks) and steady state availability (for dynamic systems). The thesis focuses on finding and/or approximating the optimal IS change of measure to efficiently estimate RAM metrics in rare events context. The contribution of the thesis is broadly divided into two main axis : first, we propose an adaptation of the approximate zero-variance IS method to estimate reliability of static networks and show the application on real passenger rail systems ; second, we propose a multi-level Cross-Entropy optimization scheme that can be used during pre-simulation to obtain CE optimized IS rates of Markovian Stochastic Petri Nets (SPNs) transitions and use them in main simulations to estimate steady state unavailability of highly reliably Markovian systems with complex logistics involved. Results from the methods show huge variance reduction and gain compared to MC simulations.
3

Optimization Algorithms for Deterministic, Stochastic and Reinforcement Learning Settings

Joseph, Ajin George January 2017 (has links) (PDF)
Optimization is a very important field with diverse applications in physical, social and biological sciences and in various areas of engineering. It appears widely in ma-chine learning, information retrieval, regression, estimation, operations research and a wide variety of computing domains. The subject is being deeply studied both theoretically and experimentally and several algorithms are available in the literature. These algorithms which can be executed (sequentially or concurrently) on a computing machine explore the space of input parameters to seek high quality solutions to the optimization problem with the search mostly guided by certain structural properties of the objective function. In certain situations, the setting might additionally demand for “absolute optimum” or solutions close to it, which makes the task even more challenging. In this thesis, we propose an optimization algorithm which is “gradient-free”, i.e., does not employ any knowledge of the gradient or higher order derivatives of the objective function, rather utilizes objective function values themselves to steer the search. The proposed algorithm is particularly effective in a black-box setting, where a closed-form expression of the objective function is unavailable and gradient or higher-order derivatives are hard to compute or estimate. Our algorithm is inspired by the well known cross entropy (CE) method. The CE method is a model based search method to solve continuous/discrete multi-extremal optimization problems, where the objective function has minimal structure. The proposed method seeks, in the statistical manifold of the parameters which identify the probability distribution/model defined over the input space to find the degenerate distribution concentrated on the global optima (assumed to be finite in quantity). In the early part of the thesis, we propose a novel stochastic approximation version of the CE method to the unconstrained optimization problem, where the objective function is real-valued and deterministic. The basis of the algorithm is a stochastic process of model parameters which is probabilistically dependent on the past history, where we reuse all the previous samples obtained in the process till the current instant based on discounted averaging. This approach can save the overall computational and storage cost. Our algorithm is incremental in nature and possesses attractive features such as stability, computational and storage efficiency and better accuracy. We further investigate, both theoretically and empirically, the asymptotic behaviour of the algorithm and find that the proposed algorithm exhibits global optimum convergence for a particular class of objective functions. Further, we extend the algorithm to solve the simulation/stochastic optimization problem. In stochastic optimization, the objective function possesses a stochastic characteristic, where the underlying probability distribution in most cases is hard to comprehend and quantify. This begets a more challenging optimization problem, where the ostentatious nature is primarily due to the hardness in computing the objective function values for various input parameters with absolute certainty. In this case, one can only hope to obtain noise corrupted objective function values for various input parameters. Settings of this kind can be found in scenarios where the objective function is evaluated using a continuously evolving dynamical system or through a simulation. We propose a multi-timescale stochastic approximation algorithm, where we integrate an additional timescale to accommodate the noisy measurements and decimate the effects of the gratuitous noise asymptotically. We found that if the objective function and the noise involved in the measurements are well behaved and the timescales are compatible, then our algorithm can generate high quality solutions. In the later part of the thesis, we propose algorithms for reinforcement learning/Markov decision processes using the optimization techniques we developed in the early stage. MDP can be considered as a generalized framework for modelling planning under uncertainty. We provide a novel algorithm for the problem of prediction in reinforcement learning, i.e., estimating the value function of a given stationary policy of a model free MDP (with large state and action spaces) using the linear function approximation architecture. Here, the value function is defined as the long-run average of the discounted transition costs. The resource requirement of the proposed method in terms of computational and storage cost scales quadratically in the size of the feature set. The algorithm is an adaptation of the multi-timescale variant of the CE method proposed in the earlier part of the thesis for simulation optimization. We also provide both theoretical and empirical evidence to corroborate the credibility and effectiveness of the approach. In the final part of the thesis, we consider a modified version of the control problem in a model free MDP with large state and action spaces. The control problem most commonly addressed in the literature is to find an optimal policy which maximizes the value function, i.e., the long-run average of the discounted transition payoffs. The contemporary methods also presume access to a generative model/simulator of the MDP with the hidden premise that observations of the system behaviour in the form of sample trajectories can be obtained with ease from the model. In this thesis, we consider a modified version, where the cost function to be optimized is a real-valued performance function (possibly non-convex) of the value function. Additionally, one has to seek the optimal policy without presuming access to the generative model. In this thesis, we propose a stochastic approximation algorithm for this peculiar control problem. The only information, we presuppose, available to the algorithm is the sample trajectory generated using a priori chosen behaviour policy. The algorithm is data (sample trajectory) efficient, stable, robust as well as computationally and storage efficient. We provide a proof of convergence of our algorithm to a high performing policy relative to the behaviour policy.

Page generated in 0.1295 seconds