Spelling suggestions: "subject:"crosscountry skiing -- 3wtechnique"" "subject:"crosscountry skiing -- detechnique""
1 |
Kinematic analysis of male olympic cross-country skiers using the open field skating techniqueHeagy, Brian S. 15 September 1992 (has links)
The kinematic characteristics of 17 elite male cross-country skiers competing in the 50 km race of the 1992 Winter Olympic Games were determined. Each skier used the open field skating technique, one of four skating techniques used in free technique cross-country ski races. Skiers were filmed by the use of three video cameras, placed at a filming site on a flat portion of the racing course. Digitized data from the video were used to determine selected kinematic parameters which included: cycle velocity; cycle length; cycle rate; center of mass (CM) velocity vector angle; CM lateral displacement; CM lateral velocity; CM horizontal velocity; ski angles; ski edging angles; several types of pole angles; and hip, knee, and trunk angles. Temporal characteristics including strong side and weak side ski and pole phase times were also calculated.
Cycle velocity and cycle length were found to be significantly related as were cycle velocity and the maximum strong side knee angle (r > .48, p < .05). Cycle velocity and the CM velocity vector angle were found to have only a
moderate non-significant relationship as did cycle velocity and the strong and weak side ski angles. For those skiers using the open field skating technique, CM lateral motion (as measured by the CM velocity vector angle and the ski angles) did not seem to be a distinguishing factor between faster and slower skiers, as hypothesized. However, cycle length and the maximum strong side knee angle did seem to distinguish faster from slower skiers. Skiers who covered more distance throughout a cyde tended to have faster cycle velocities. Contributing to this increased distance could have been the thrust of the strong side ski. Skiers with the most strong side knee extension tended to ski the fastest. Thus, it seems that greater leg extension results in greater propulsive forces and greater velocity. / Graduation date: 1993
|
Page generated in 0.0532 seconds