• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cross-immunity in multi-strain infectious diseases

Chamchod, Farida January 2010 (has links)
The goal of this study is to try to understand multi-strain diseases with the presence of cross-immunity by using mathematical models and other mathematical tools. Cross-immunity occurs when a host who is exposed to one disease, or one strain of a disease, develops resistance or partial resistance to related diseases or strains. It is an important factor in the epidemiology of diseases prone to mutation. This work includes modelling influenza in both presence and absence of controls. It also includes modelling malaria when cross-species immunity is present. In addition, vector-bias of mosquitoes to infected humans is also studied in the single-strain malaria model.
2

Mathematical models to investigate the relationship between cross-immunity and replacement of influenza subtypes

Asaduzzaman, S M 08 January 2018 (has links)
A pandemic subtype of influenza A sometimes replaces (e.g., in 1918, 1957, 1968) but sometimes coexists (e.g., in 1977) with the previous seasonal subtype. This research aims to determine a condition for replacement or coexistence of influenza subtypes. We formulate a hybrid model for the dynamics of influenza A epidemics taking into account cross-immunity of influenza strains depending on the most recent seasonal infection. A combination of theoretical and numerical analyses shows that for very strong cross-immunity between seasonal and pandemic subtypes, the pandemic cannot invade, whereas for strong and weak cross-immunity there is coexistence, and for intermediate levels of cross-immunity the pandemic may replace the seasonal subtype. Cross-immunity between seasonal strains is also a key factor of our model because it has a major influence on the final size of seasonal epidemics, and on the distribution of susceptibility in the population. To determine this cross-immunity, we design a novel statistical method, which uses a theoretical model and clinical data on attack rates and vaccine efficacy among school children for two seasons after the 1968 A/H3N2 pandemic. This model incorporates the distribution of susceptibility and the dependence of cross-immunity on the antigenic distance of drifted strains. We find that the cross-immunity between an influenza strain and the mutant that causes the next epidemic is 88%. Our method also gives an estimated value 2.15 for the basic reproduction number of the 1968 pandemic influenza. Our hybrid model agrees qualitatively with the observed subtype replacement or coexistence in 1957, 1968 and 1977. However, our model with the homogeneous mixing assumption significantly over estimates the pandemic attack rate. Thus, we modify the model to incorporate heterogeneity in the contact rate of individuals. Using the determined values of cross-immunity and the basic reproduction number, this modification lowers the pandemic attack rate slightly, but it is still higher than the observed attack rates. / Graduate

Page generated in 0.0143 seconds