• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectrum Management and Cross-layer Protocol Design in Cognitive Radio Networks

Dai, Ying January 2014 (has links)
Cognitive radio networks (CRNs) are a promising solution to the channel (spectrum) congestion problem. This dissertation presents work on the two main issues in CRNs: spectrum management and cross-layer protocol design. The objective of spectrum management is to enable the efficient usage of spectrum resources in CRNs, which protects primary users' activities and ensures the effective spectrum sharing among nodes. We consider to improve the spectrum sensing efficiency and accuracy, so that the spectrum sensing cost is reduced. We consider the pre-phase of spectrum sensing and provide structures for sensing assistance. Besides the spectrum sensing phase, the sharing of spectrum, or the channel allocation, among nodes is also the main component in the spectrum management. We provide our approach to achieve a reliable and effective channel assignment. The channel availabilities for different nodes in CRNs are dynamic and inconsistent. This poses challenges on the MAC layer protocols for CRNs. Moreover, due to the lack of knowledge on primary users, they can suddenly become available during the secondary users' data transmission. Therefore, for a end-to-end data transmission in CRNs, the routing algorithm is different from the existing routing algorithms in traditional networks. We consider the cross-layer protocol design, and propose the solutions for efficient data transmission. We propose the novel routing protocol design considering the boundaries of PUs. Also, an effective structure for reliable end-to-end data transmission is presented, which makes use of the area routing protocol. We build a USRP/Gnuradio testbed for the performance evaluation of our protocols. / Computer and Information Science
2

Architecture and Cross-Layer Mobility Management Protocols for Next-Generation Wireless Systems

Mohanty, Shantidev 29 November 2005 (has links)
As a result of rapid progress in research and development, today's wireless world exhibits several heterogeneous communication networks, such as cellular networks, satellite networks, wireless local area networks (WLAN), mobile ad hoc networks (MANET), and sensor networks. These networks are complementary to each other. Hence, their integration can realize a unified wireless system that has the best features of the individual networks. This has spurred much research interest in designing integrated next-generation of wireless systems (NGWS). While existing wireless networks have been extensively studied individually, the integrated wireless system brings new challenges in architecture design, system management, and protocol design. The different wireless networks use different communication technologies and are based on different networking paradigms. Therefore, it is challenging to integrate these networks such that their heterogeneities are hidden from each other and a harmonious inter-operation among them is achieved. The objective of this research is to design a scalable, secure, and robust architecture and to develop seamless mobility management protocols for NGWS. More specifically, an architecture that integrates the heterogeneous wireless systems is first proposed for NGWS. Next, a cross-layer (Layer 2 + 3) handoff management protocol is developed for NGWS. Afterward, analytical modeling is developed to investigate the handoff performance of the existing mobility management protocols for different types of applications. Finally, a framework for multi-layer mobility management is developed to support the seamless handoff support to all types of applications in NGWS.

Page generated in 0.0423 seconds