• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RELATIVE CROSS TRACK ERROR CALCULATIONS IN ASABE/ISO 12188-2:2012 AND POWER/ENERGY ANALYSIS USING A 20 HP TRACTOR ON A FULLY ELECTRIC DRIVETRAIN

Rounsaville, Joseph D. 01 January 2017 (has links)
ASABE/ISO Standard 12188-2 provides test procedures for positioning and guidance systems in agricultural vehicles during straight and level travel. The standard provides excellent descriptions of test procedures, however it does not provide detail on methods to carry out the calculations necessary to calculate relative cross-track error (XTE), which is the primary measurement used to judge accuracy of the system. The standard was used to estimate the guidance accuracy of a relatively low-accuracy vehicle at 1.25 and 0.5 m s-1. At 1.25 m s-1, a nearest point calculation overestimated mean XTE by 0.8 cm, or 8.2%. The location sampling density was much higher with a 0.5 m s-1 travel speed, and mean XTE was only overestimated by 0.1 cm with the nearest point method. Power and energy data were recorded using a sled with a known weight to vary the drawbar force on asphalt. This will allow a comparison between the electric and conventional tractor over a range of forces applicable to a 20 HP tractor. The electric tractor was found to consume less than half the energy compared to a Kubota L5030 in a common configuration and a custom configuration to match the weight distribution of the electric tractor. Finger weeding tasks were recorded throughout the year capturing the duration and frequency of these tasks at the University of Kentucky (UK) consumer supported agriculture (CSA) farm. Power and energy data were recorded from the electric tractor while finger weeding. Diesel consumption was also recorded from a conventional tractor while finger weeding. Field data shows that the electric tractor needs approximately 0.532 kWh of energy while a conventional tractor requires approximately 1.258 kWh or energy to finger weed each row of vegetables. Conventional electric bills were compiled for the University of Kentucky CSA establishing an average monthly electric need. Historic NREL data was compiled establishing an average potential solar resource for central Kentucky. It was determined that a 15 kW photovoltaic array could meet the conventional electric needs of the UK CSA and supply the net energy allowing the electric tractor to meet the finger weeding need.
2

Evaluation of the utility and performance of an autonomous surface vehicle for mobile monitoring of waterborne biochemical agents

Wolfe, Jessica Simmerman 10 December 2021 (has links)
Real-time water quality monitoring is crucial due to land utilization increases which can negatively impact aquatic ecosystems from surface water runoff. Conventional monitoring methodologies are laborious, expensive, and spatio-temporally limited. Autonomous surface vehicles (ASVs), equipped with sensors/instrumentation, serve as mobile sampling stations that reduce labor and enhance data resolution. However, ASV autopilot navigational accuracy is affected by environmental forces (wind, current, and waves) that can alter trajectories of planned paths and negatively affect spatio-temporal resolution of water quality data. This study demonstrated a commercially available solar powered ASV equipped with a multi-sensor payload ability to operate autonomously to accurately and repeatedly maintain established A-B line transects under varying environmental conditions, where lateral deviation from a planned linear route was measured and expressed as cross-track error (XTE). This work provides a framework for development of spatial/temporal resolution limitations of ASVs for real-time monitoring campaigns and future development of in-situ sampling technologies.
3

Performance evaluation of low-cost GPS machine guidance systems for livestock production forage and pasture management applications

Wright, Conner Childress 10 May 2024 (has links) (PDF)
Global Positioning System (GPS) machine guidance aids in the precise navigation and piloting of farm machinery and serves to boost productivity and optimize farm operations. Characterization of low-cost GPS guidance systems for livestock production operations is necessary for return on investment (ROI) decision making. The objective of this research is to characterize the accuracy of four commercially available low-cost ($985 - $4,200) wide area augmentation system (WAAS) corrected GPS guidance systems. Testing procedures were designed in accordance with the ASABE/ISO standard 12188-2 for testing of satellite-based guidance systems during straight line travel. The vehicles lateral deviation of a planned path, characterized as cross-track error (XTE), was evaluated for short-term and long-term guidance for each system at speeds of 4.8, 9.6, and 14.5 kph (3, 6, and 9 mph).

Page generated in 0.0583 seconds