• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Highly Non-Convex Crossing Sequences

McConvey, Andrew January 2012 (has links)
For a given graph, G, the crossing number crₐ(G) denotes the minimum number of edge crossings when a graph is drawn on an orientable surface of genus a. The sequence cr₀(G), cr₁(G), ... is said to be the crossing sequence of a G. An equivalent definition exists for non-orientable surfaces. In 1983, Jozef Širáň proved that for every decreasing, convex sequence of non-negative integers, there is a graph G such that this sequence is the crossing sequence of G. This main result of this thesis proves the existence of a graph with non-convex crossing sequence of arbitrary length.
2

On 2-crossing-critical graphs with a V8-minor

Arroyo Guevara, Alan Marcelo 20 May 2014 (has links)
The crossing number of a graph is the minimum number of pairwise edge crossings in a drawing of a graph. A graph $G$ is $k$-crossing-critical if it has crossing number at least $k$, and any subgraph of $G$ has crossing number less than $k$. A consequence of Kuratowski's theorem is that 1-critical graphs are subdivisions of $K_{3,3}$ and $K_{5}$. The graph $V_{2n}$ is a $2n$-cycle with $n$ diameters. Bokal, Oporowski, Richter and Salazar found in \cite{bigpaper} all the critical graphs except the ones that contain a $V_{8}$ minor and no $V_{10}$ minor. We show that a 4-connected graph $G$ has crossing number at least 2 if and only if for each pair of disjoint edges there are two disjoint cycles containing them. Using a generalization of this result we found limitations for the 2-crossing-critical graphs remaining to classify. We showed that peripherally 4-connected 2-crossing-critical graphs have at most 4001 vertices. Furthermore, most 3-connected 2-crossing-critical graphs are obtainable by small modifications of the peripherally 4-connected ones.
3

Highly Non-Convex Crossing Sequences

McConvey, Andrew January 2012 (has links)
For a given graph, G, the crossing number crₐ(G) denotes the minimum number of edge crossings when a graph is drawn on an orientable surface of genus a. The sequence cr₀(G), cr₁(G), ... is said to be the crossing sequence of a G. An equivalent definition exists for non-orientable surfaces. In 1983, Jozef Širáň proved that for every decreasing, convex sequence of non-negative integers, there is a graph G such that this sequence is the crossing sequence of G. This main result of this thesis proves the existence of a graph with non-convex crossing sequence of arbitrary length.
4

Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay

Biglands, Adrian Unknown Date
No description available.

Page generated in 0.061 seconds