Spelling suggestions: "subject:"crossing numbers"" "subject:"crossing lumbers""
1 |
Highly Non-Convex Crossing SequencesMcConvey, Andrew January 2012 (has links)
For a given graph, G, the crossing number crₐ(G) denotes the minimum number of edge crossings when a graph is drawn on an orientable surface of genus a. The sequence cr₀(G), cr₁(G), ... is said to be the crossing sequence of a G. An equivalent definition exists for non-orientable surfaces.
In 1983, Jozef Širáň proved that for every decreasing, convex sequence of non-negative integers, there is a graph G such that this sequence is the crossing sequence of G. This main result of this thesis proves the existence of a graph with non-convex crossing sequence of arbitrary length.
|
2 |
On 2-crossing-critical graphs with a V8-minorArroyo Guevara, Alan Marcelo 20 May 2014 (has links)
The crossing number of a graph is the minimum number of pairwise edge crossings in a drawing of a graph. A graph $G$ is $k$-crossing-critical if it has crossing number at least $k$, and any subgraph of $G$ has crossing number less than $k$. A consequence of Kuratowski's theorem is that 1-critical graphs are subdivisions of $K_{3,3}$ and $K_{5}$. The graph $V_{2n}$ is a $2n$-cycle with $n$ diameters. Bokal, Oporowski,
Richter and Salazar found in \cite{bigpaper} all the critical graphs except the ones that contain a $V_{8}$ minor and no $V_{10}$ minor.
We show that a 4-connected graph $G$ has crossing number at least 2 if and only if for each pair of disjoint edges there are two disjoint cycles containing them. Using a generalization of this result we found limitations for the 2-crossing-critical graphs remaining to classify. We showed that peripherally 4-connected 2-crossing-critical graphs have at most 4001 vertices. Furthermore, most 3-connected 2-crossing-critical graphs are obtainable by small modifications of the peripherally 4-connected ones.
|
3 |
Highly Non-Convex Crossing SequencesMcConvey, Andrew January 2012 (has links)
For a given graph, G, the crossing number crₐ(G) denotes the minimum number of edge crossings when a graph is drawn on an orientable surface of genus a. The sequence cr₀(G), cr₁(G), ... is said to be the crossing sequence of a G. An equivalent definition exists for non-orientable surfaces.
In 1983, Jozef Širáň proved that for every decreasing, convex sequence of non-negative integers, there is a graph G such that this sequence is the crossing sequence of G. This main result of this thesis proves the existence of a graph with non-convex crossing sequence of arbitrary length.
|
4 |
Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with DelayBiglands, Adrian Unknown Date
No description available.
|
Page generated in 0.061 seconds