• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study on low voltage ride-through capability improvement for doubly fed induction generator

Lin, Xiao-Chiu 02 September 2010 (has links)
Since large scale unscheduled tripping of wind power generation could lead to power system stability problem. Thus network interconnection regulations become more rigid when the wind power penetration reaches a non-neglible portion of the total power generation. This thesis presents a comparison of five different low voltage ride through (LVRT) capability enhancement technologies, i.e., additional rotor resistance, DC bus chopper, crowbar on rotor, the combination of above schemes, and grid voltage support by controlling grid side converter. System simulations are performed under Digsilent environment with model and control blocks provided by the package. Additional models are developed to implement the LVRT enhancement schemes studied. A Doubly-Fed Induction Generator (DFIG) with pitch control is used to simulate different system fault scenarios with different voltage sag magnitude and duration time. Simulation results indicate that different enhancement schemes provide various levels in relieving DC bus overvoltage, rotor winding overcurrent, and overspeed problems, and the method combines all tested schemes seems to provide the best result.
2

Power electronic systems design co-ordination for doubly-fed induction generator wind turbines

Ozakturk, Meliksah January 2012 (has links)
Wind turbine modelling using doubly-fed induction generators is a well-known subject. However, studies have tended to focus on optimising the components of the system rather than considering the interaction between the components. This research examines the interaction of the control methods for a doubly-fed induction generator (DFIG) in a wind turbine application integrating them with the crowbar protection control and DC-link brake control to make the best use of the converter. The controls of the rotor-side and the grid-side converters of the DFIG model are both well established and have been shown to work. Typically the crowbar protection is designed in order to protect the rotor-side converter and the power electronic components of the DFIG system from high currents occurring in the rotor due to the faults. The DC-link brake-overvoltage protection is also designed to prevent the overcharging of the DC-link capacitor placed between the rotor-side converter and the grid-side converter. In order to show that these protection schemes work and with thought can co-ordinate with each other, tests consisting of a number of balanced three-, two- and one-phase voltage sags are applied to the network voltage. The main contributions of this thesis are establishing operational tuning and design limits for the controllers and system subassemblies. This is to minimise the electrical subsystem interaction while maintaining adequate performance, and have an improved DC-link control. This work also includes a full electrical system study of the wind turbine and an essential literature review on significant references in the field of the DFIG wind turbine system modelling, control and protection. Specifically this research project makes a number of novel contributions to the literature: enhanced DC voltage control including operating point sensitivity analysis and dynamic stiffness assessment, sensitivity and robustness analyses of the power loop control and control loop segmentation by appropriately tuning the controller loops.

Page generated in 0.0264 seconds