• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cryogenic Processing of <em>Al 7050-T7451</em> Alloy for Improved Surface Integrity

Huang, Bo 01 January 2016 (has links)
Al 7050-T7451 alloy with good combinations of strength, stress corrosion cracking resistance and toughness, is used broadly in the aerospace/aviation industry for fatigue-critical airframe structural components. However, it is also considered as a highly anisotropic alloy as the crack growth behavior along the short transverse direction is very different from the one in the long transverse direction, due to the inhomogeneous microstructure with the elongated grains distributed in the work material used in the sheet/plate applications. Further processes on these materials are needed to improve its mechanical and material properties and broaden its applications. The material with ultra-fine or nano grains exhibits improved wear and corrosion resistance, higher hardness and better fatigue life, compared to the one with coarse grains. In recent times, the development of novel processing technologies has gained great attention in the research community to enhance the properties of the materials employed in the aerospace, biomedical, precision instrument, automotive, nuclear/power industries. These novel processing technologies modify the microstructure of this alloy and improve the properties. The aim of this dissertation is to investigate the effects of cryogenic processes, including friction stir processing (FSP), machining and burnishing, on Al 7050-T7451 alloy to solve the inhomogeneity issue and improve its surface integrity. FSP is applied to modify the microstructure of Al 7050-T7451 alloy for achieving more homogeneous structure with near ultra-fine grains (UFG) which were less than 2 µm, particularly in cryogenic FSP with liquid nitrogen as the coolant. Approximately 10% increase could be observed from the hardness measurement from the samples processed by cryogenic FSP, in contrast to dry FSP. Also, the texture change from Al (200) to Al (111) could be achieved in all the samples processed by dry and cryogenic FSP. Cryogenic machining and burnishing processes were also applied to enhance the surface integrity of the manufactured components with near-UFG structure. The highest cutting temperature was reduced by up to 44.7% due to the rapid cooling effect of liquid nitrogen in cryogenic machining, compared with dry machining. Nano grains were produced in the refined layers induced by cryogenic burnishing. And, up to 35.4% hardness increase was obtained within the layer depth of 200 µm in the cryogenically-burnished surface. A numerical finite element method (FEM) model was developed for predicting the process performance in burnishing. Less than 10% difference between the experimental and predicted burnishing forces was achieved in the simulation of cryogenic burnishing, and reasonable predictions were also achieved for temperatures, severe plastic deformation (SPD) layers.
2

CRYOGENIC BURNISHING OF Co-Cr-Mo BIOMEDICAL ALLOY FOR ENHANCED SURFACE INTEGRITY AND IMPROVED WEAR PERFORMANCE

Yang, Shu 01 January 2012 (has links)
The functional performance of joint implants is largely determined by the surface layer properties in contact. Wear/debris-induced osteolysis and aseptic loosening has been identified as the major cause of failure of metal-on-metal joint implants. A crucial requirement for the long-term stability of the artificial joint is to minimize the release of debris particles. Severe plastic deformation (SPD) processes have been used to modify the surface integrity properties by generating ultrafine, or even nano-sized grains and grain size gradients in the surface region of many materials. These fine grained materials often exhibit enhanced surface integrity properties and improved functional performance (wear resistance, corrosion resistance, fatigue life, etc.) compared with their conventional coarse grained counterparts. The aim of the present work is to investigate the effect of a SPD process, cryogenic burnishing, on the surface integrity modifications of a Co-Cr-Mo alloy, and the resulting wear performance of this alloy due to the burnishing-induced surface integrity properties. A systematic experimental study was conducted to investigate the influence of different burnishing parameters on distribution of grain size, phase structure and residual stresses of the processed material. The wear performance of the processed Co-Cr-Mo alloy was tested via pin-on-disk wear tests. The results from this work show that the cryogenic burnishing can significant improve the surface integrity of the Co-Cr-Mo alloy which would finally lead to advanced wear performance due to refined microstructure, high hardness, compressive residual stresses and favorable phase structure on the surface layer. A finite element model (FEM) was developed for predicting the grain size changes during burnishing of Co-Cr-Mo alloy under both dry and cryogenic conditions. A new material model was used for incorporating flow stress softening and associated grain size refinement caused by the dynamic recrystallization (DRX). The new material model was implemented in a commercial FEM software as a customized user subroutine. Good agreement between predictions and experimental observations was achieved. Encouraging trends are revealed with great potential for application in industry.

Page generated in 0.0866 seconds