• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies On The Expression Of The bgl Operon Of Escherichia Coli In Stationary Phase

Madan, Ranjna 10 1900 (has links)
The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to induce its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. The experiments described in this thesis were carried out to test these possibilities. In cultures exposed to prolonged stationary phase, majority of the bacterial population dies and a few mutants that have the ability to scavenge the nutrients released by the dying cell mass survive. Bgl+ mutants were found to be enriched in twenty-eight-day-old Luria Broth grown cultures of E. coli that are wild type for bgl but carry the rpoS819 allele. Out of the five Bgl+ mutants that were isolated, four carried a mutation in the hns locus while one of them, ZK819-97, had an activating mutation linked to the bgl operon. Further analysis of ZK819-97 by DNA sequencing revealed the existence of a single C to T transition at the CAP binding site in the regulatory region. ZK819-97 was chosen for further analysis. Competition assays were carried out in which Bgl+ strain, ZK819-97 (Strr), and the parental Bgl- strain, ZK820 (Nalr), were grown independently for twenty-four hours in Luria Broth and then mixed in 1:1,000 (v/v) ratio reciprocally, without addition of fresh nutrients. ZK819-97, when present in minority, was found to increase in number and take over the parental strain, ZK820, i.e. ZK819-97 showed a Growth Advantage in Stationary Phase phenotype. To determine whether the GASP phenotype of ZK819-97 is associated with the bgl locus, the bgl allele from this strain was transferred by P1 transduction to its parental strain, ZK819. The resulting strain, ZK819-97T (Bgl+, Tetr), when competed with the parental strain, ZK819 Tn5 (Bgl-, Kanr), also showed a GASP phenotype when present in minority in the mixed cultures. To reconfirm this further, the bgl locus was deleted from ZK819-97T. The resulting strain, ZK819-97Δbgl, showed a loss of the GASP phenotype. When the bglB locus was disrupted in ZK819-97T, the resulting strain, ZK819-97ΔB, also failed to show a GASP phenotype, indicating that the phospho-β-glucosidase B activity is essential for this phenotype. The strain, ZK819-IS1, carrying an activating IS1 insertion within the bgl regulatory region also showed a GASP phenotype, confirming that this phenotype of the Bgl+ strain is independent of the nature of the activating mutation. All the above mentioned strains used in the competition assays carry a mutant allele of rpoS, rpoS819. Introduction of the wild type rpoS allele in these strains resulted in the loss of the GASP phenotype of the Bgl+ strain, suggesting that the two mutations work in a concerted manner. The Bgl+ strain was found to show the GASP phenotype only when present in minority of 1:1,000 or 1:10,000 in the mixed cultures and showed a slight disadvantage at higher ratios, indicating that the GASP phenotype of the Bgl+ strain is a frequency dependent phenomenon. In competition assays carried out between 24-hour-old cultures of Bgl+ and Bgl- strains resuspended in five-day-old spent medium prepared from a wild type E. coli strain, Bgl+ strain did not show any extra or early GASP phenotype. In addition, a reporter strain, which has a lacZ transcriptional fusion with the activated bgl promoter, was resuspended in spent medium prepared from a five-day-old culture of wild type strain of E. coli and bgl promoter activity was measured by β-galactosidase assay. The bgl promoter did not show any induction in this medium. These experiments suggest the absence of any β-glucoside like molecules in the spent medium within the sensitivity of these assays. A reporter strain that has a lacZ transcriptional fusion to the wild type bgl promoter was used to measure the expression level of this promoter during exponential and stationary phase of growth in LB. Expression of the wild type as well as various activated promoters of bgl was found to be enhanced in stationary phase. To investigate a possible role of the rpoS encoded stationary phase specific sigma factor, RpoS (σs), and another stationary phase factor, Crl, known to be important for the regulation of many genes of the σs regulon, the bgl promoter activity measurements were carried out in the presence or the absence of RpoS and/or Crl. RpoS along with Crl was found to negatively regulate the expression of wild type as well as activated promoters of bgl, both in exponential and stationary phase. In the absence of the negative regulation by RpoS and Crl, the increase in the bgl promoter activity was more pronounced as compared to that in its presence. rpoS and crl mutations are common in nature and it has been suggested that crl deletion gives a growth advantage to the strain in stationary phase. To test this possibility crl deletion was created in wild type as well as in attenuated rpoS allele background. The strain carrying the crl deletion was found to have a growth advantage in stationary phase over the wild type strain in the presence of wild type rpoS allele, while it shows a slight disadvantage in combination with mutant rpoS. Over expression of LeuO or BglJ is known to activate the bgl operon. To study a possible role of these factors in the regulation of the bgl expression in stationary phase, the bgl promoter activity was measured in strains that were deleted for leuO and/or bglJ, in the absence or presence of crl. These studies indicated that BglJ had a moderate effect on the bgl promoter activity in stationary phase in the absence of Crl but not in its presence. LeuO did not have a significant effect on the bgl promoter activity in either condition. Thus under the conditions tested, the physiological increase in the levels of LeuO and BglJ in stationary phase was insufficient to regulate the bgl expression. Preliminary results show that the bgl operon might be involved in the regulation of oppA, an oligopeptide transporter subunit, in stationary phase. Implications of these findings are discussed. The studies reported in this thesis highlight the involvement of the bgl operon of E. coli in stationary phase. This could be mediated by genetic as well as physiological mechanisms. This study also underscores the importance of observing organisms closer to their natural context and the need to reconsider the concept of ‘cryptic genes’.
2

Studies on the Evolution of Aromatic Beta-Glucoside Catabolic Systems under Different Stress Conditions in Escherichia coli

Zangoui Nejad Chahkootahi, Parisa January 2014 (has links) (PDF)
The genetic systems involved in the utilisation of aromatic β-glucosides in E. coli consist of the bgl, asc, and chb operons and the locus bglA encoding phospho-β-glucosidase A. The bgl and asc operons are known as cryptic or silent systems since their expression is not sufficient for utilisation of these sugars in wild type strains of E. coli. Their transcriptional activation by different classes of mutations confers a Bgl+ phenotype to the mutant. The maintenance of cryptic genes without accumulating deleterious mutation in spite of being silent is an evolutionary puzzle. Several observations have suggested the possibility that these genes may be expressed under specific physiological conditions conferring a fitness advantage to the organism. The main aim of this study was to investigate the possible role of aromatic β-glucoside catabolic systems of E. coli in combating nutrient stress and microaerobic growth conditions. The results presented in Chapter 2 address the evolution of aromatic β-glucoside catabolic systems when exposed to a novel β-glucoside as the sole substrate. The results indicate that the bgl opeon, the primary system involved in the utilisation of the aromatic β-glucosides arbutin and salicin, is also involved in esculin utilisation. In the absence of bglB encoding the enzyme phospho-β-glucosidase B, activation of the silent asc operon enables esculin utilisation. The bglA gene encoding phospho-β-glucosidase A specific for arbutin, can undergo successive mutations to evolve the ability to hydrolyse esculin and salicin sequentially when bglB and ascB are absent. The Esc+ and Sal+ mutants retain their arbutin+ phenotype, indicating that the mutations enhance the promiscuity of the enzyme. Sequencing data indicate that the first step Esc+ mutant carries a four base insertion within the promoter of the bglA gene that results in enhanced transcription of bglA. RT-PCR studies confirm that both the steady-state levels as well as the half-life of the bglA mRNA are enhanced in the mutant. This is further corroborated by the observation that overexpression of wild type bglA in the parent strain using a multicopy plasmid confers an Esc+ phenotype. The second step Sal+ mutant carries a point mutation within bglA ORF, a thymine to guanine transversion at position 583 (T583G) of the bglA gene, resulting in an amino acid change from cysteine to glycine at position 195 (C195G) of the BglA ORF close to the active site. Presence of a plasmid carrying the T583G mutation, introduced by site-directed mutagenesis, results in a Sal+ phenotype, confirming the role of the transversion in conferring the Sal+ phenotype. Based on docking studies, the positioning of salicin into the substrate binding site of the mutant BglA enzyme is different compared to wild type BglA due to the loss of stearic hindrance for the binding of salicin when C195 is replaced by the smaller amino acid glycine in the mutant protein. These observations indicate that under conditions of nutrient deprivation, exposure to novel substrates can result in the evolution of new metabolic capabilities by the sequential modification of a pre-existing genetic system. In the case of one novel substrate, the mutation results in the overexpression of the hydrolytic enzyme, while in the case of the second substrate, a mutation close to its active site increases its substrate specificity. Results presented in Chapter 3 specifically deal with the involvement of the bgl operon under low levels of oxygen. Earlier observations have shown that there is a 22 fold enhancement in the expression of the bgl operon under anaerobic condition. The present results provide evidence that bgl expression has a physiological role under low levels of oxygen and in addition suggest a possible mechanism for the overexpression of the bgl operon that involves the ArcAB two component system known to mediate regulation under microaerobic and static conditions. Transcription studies using a lacZ reporter fused to the wild type bgl promoter show that there is enhanced transcription from the bgl promoter under microaerobic and static conditions in the presence of arcA encoding the response regulator compared to that in its absence. The positive effect of arcA on the expression of the bgl operon is dispensable in the absence of H-NS since presence or absence of arcA does not change the expression of the bgl operon in an hns-null background, implying that the involvement of ArcA is via antagonizing H-NS. Competition experiments indicate that there is growth advantage associated with the activated allele of the bgl operon under low levels of oxygen since Bgl+ strains carrying the activated allele of the bgl operon as well as strains expressing BglG constitutively can out-compete wild-type strains. Presence of the wild type arcA allele results in a strong growth advantage compared to its absence under static conditions but not aerobic condition. The bgl operon seems to be one of the possible downstream targets of ArcA under static condition since absence of the bgl operon results in a modest reduction of the growth advantage (GASP) phenotype conferred by arcA. The up-regulation of the bgl operon is likely to enable the cells to scavenge available nutrients from their niche more efficiently. These experiments also show that the GASP phenotype associated with BglG constitutive strains under static conditions involves downstream genes that are different from oppA known to be one of the downstream targets during aerobic growth. It is possible that under low level of oxygen, the bgl operon is regulating a different set of downstream genes involving a different mechanism. In summary, the results of this investigation show that the aromatic β-glucoside catabolic systems in E. coli play a role in the generation of new metabolic capabilities via mutations in pre-existing genetic systems as well as through changes in gene expression patterns. The mechanisms outlined in this study are likely to be of broader significance applicable to microbial evolution under stress in general.

Page generated in 0.0325 seconds