Spelling suggestions: "subject:"crystal doptics"" "subject:"crystal glyptics""
21 |
Numerical modelling of photonic crystal based switching devicesSelim, Ramsey January 2010 (has links)
In the last few years research has identified Photonic Crystals (PhCs) as promising material that exhibits strong capability of controlling light propagation in a manner not previously possible with conventional optical devices. PhCs, otherwise known as Photonic Bandgap (PBG) material, have one or more frequency bands in which no electromagnetic wave is allowed to propagate inside the PhC. Creating defects into such a periodic structure makes it possible to manipulate the flow of selected light waves within the PhC devices outperforming conventional optical devices. As the fabrication of PhC devices needs a high degree of precision, we have to rely on accurate numerical modelling to characterise these devices. There are several numerical modelling techniques proposed in literature for the purpose of simulating optical devices. Such techniques include the Finite Difference Time Domain (FDTD), the Finite Volume Time Domain (FVTD), and the Multi-Resolution Time Domain (MRTD), and the Finite Element (FE) method among many others. Such numerical techniques vary in their advantages, disadvantages, and trade-offs. Generally, with lower complexity comes lower accuracy, while higher accuracy demands more complexity and resources. The Complex Envelope Alternating Direction Implicit Finite Difference Time Domain (CE-ADI-FDTD) method was further developed and used throughout this thesis as the main numerical modelling technique. The truncating layers used to surround the computational domain were Uniaxial Perfectly Matched Layers (UPML). This thesis also presents a new and robust kind of the UPML by presenting an accurate physical model of discretisation error. iv This thesis has focused on enhancing and developing the performance of PhC devices in order to improve their output. An improved and new design of PhC based Multiplexer/Demultiplexer (MUX/DEMUX) devices is presented. This is achieved using careful geometrical design of microcavities with respect to the coupling length of the propagating wave. The nature of the design means that a microcavity embedded between two waveguides selects a particular wavelength to couple from one waveguide into the adjacent waveguide showing high selectivity. Also, the Terahertz (THz) frequency gap, which suffers from a lack of switching devices, has been thoroughly investigated for the purpose of designing and simulating potential PhC based switching devices that operate in the THz region. The THz PhC based switching devices presented in this thesis are newly designed to function according to the variation of the resonant frequency of a ring resonator embedded between two parallel waveguides. The holes of the structures are filled with polyaniline electrorheological fluids that cause the refractive index of the holes to vary with applied external electric field. Significant improvements on the power efficiency and wavelength directionality have been achieved by introducing defects into the system.
|
22 |
Experimental investigation on the effect of disorder in metallo-photonic band gap system /Hang, Zhihong. January 2004 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2004. / Includes bibliographical references (leaves 52). Also available in electronic version. Access restricted to campus users.
|
23 |
LIGHT SCATTERING FROM AMMONIA AND WATER CRYSTALSHolmes, Alan Wright, 1950- January 1981 (has links)
Researchers analyzing the upper clouds of Jupiter and Saturn are unable to theoretically reproduce the data returned by Pioneers 10 and 11 and Voyagers 1 and 2 with an approach based on Mie theory. Ammonia crystals are believed to be an important constituent of Jupiter's upper clouds, but both their shape and scattering properties were unknown at the start of this work. Ammonia crystals and water crystals were grown in a cold chamber at temperatures 20°C below their freezing points (0°C and -77.7°C, respectively). The H₂O crystals formed had shapes in agreement with published growth habit diagrams. The NH₃ crystals formed were usually irregular in shape, but regular four-sided pyramids were commonly observed. This four-sided pyramidal shape is in agreement with ammonia's primitive cubic crystal structure. Ammonia crystals could not be formed at temperatures above -95°C due to nucleation problems. A scattering measuring instrument was constructed with fifteen separate lens-detector combinations aimed at a common point in the center of the cold chamber. A laser beam (6328Å wavelength) traversed the chamber center, illuminating any crystal aerosal clouds present. A computer was used to rapidly sample the outputs of the fifteen detectors and to drive a photoelectric modulator to change the slow speed polarization properties of the laser beam. The measurements resulted in a determination of the single scattering phase function and degree of linear polarization for the crystal species present. Water crystals were found to have scattering properties similar to that reported by previous researchers. The H₂O crystal scattering possesses a smaller backscatter peak and smaller polarization features than is common for water spheres of similar size. A negative polarization of 5% occurred in the forward scattering hemisphere and a positive polarization of 10% in the rear. Ammonia particles were observed to have a backscattering peak four times higher than for water crystals. The NH₃ particle light scattering produced very little polarization of the scattered light. A small (∼ 4%) negative polarization occurred in the forward scattering hemisphere. Work is continuing here to make scattering measurements using blue light illumination nearly simultaneous with the red HeNe laser wavelength illumination.
|
24 |
Structure and characterization of passivated inorganic nanocrystals and three dimensional nanocrystal arraysHarfenist, Steven A. 12 1900 (has links)
No description available.
|
25 |
Generalized anisotropic acoustooptic diffraction in uniaxial crystalsOliveira, José E. B. (José Edimar Barbosa) January 1986 (has links)
No description available.
|
26 |
Statistical method in optical crystallography: technique and application to rock forming mineralsLangford, Stephen A January 1972 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii at Manoa, 1972. / Bibliography: leaves 131-138. / 185 l illus., tables
|
27 |
Propagation effects in optical waveguides, fibres and devices /Tomljenovic-Hanic, Snjezana. January 2003 (has links)
Thesis (Ph.D.)--Australian National University, 2003.
|
28 |
Design and development of liquid crystal lensesAshraf, Mujahid Al Islam. January 2006 (has links)
Thesis (MEng) - Swinburne University of Technology, Faculty of Engineering and Industrial Sciences, Centre for Micro-Photonics, 2006. / A thesis submitted for the degree of Master of Engineering, Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2006. Typescript. Includes bibliographical references (p. 74-77).
|
29 |
Analysis of paramagnetic point defects in KH₂PO₄ and KTiOPO₄ crystalsGarces, Nelson Y. January 2000 (has links)
Thesis (Ph. D.)--West Virginia University, 2000. / Title from document title page. Document formatted into pages; contains xii, 116 p. : ill. Includes abstract. Includes bibliographical references (p. 106-109).
|
30 |
Modeling photonic crystal devices by Dirichlet-to-Neumann maps /Hu, Zhen. January 2009 (has links) (PDF)
Thesis (Ph.D.)--City University of Hong Kong, 2009. / "Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [85]-91)
|
Page generated in 0.0636 seconds