• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of chemical modifiers on borax crystal growth, nucleation and habit

Puri, Avinosh Dev January 1980 (has links)
No description available.
2

The kinetics of solvent-mediated phase transformations.

Wu, Hsiu-Jean. January 1990 (has links)
The objectives of this work are to characterize and model the solvent-mediated phase transformation process of theophylline anhydrous crystals to the monohydrate crystals in an aqueous system. In order to model the transformation, the following processes are taken into account: (1) the dissolution kinetics of theophylline anhydrous crystals, (2) the kinetics of the formation of theophylline monohydrate nuclei, and (3) the growth kinetics of the monohydrate crystals. The driving forces for the above processes are determined from the concentration of theophylline in the solution and the solubilities of theophylline anhydrous and monohydrate. The solubilities of theophylline anhydrous and the monohydrate, and these three distinct processes along with the overall transformation phenomena were investigated in the present study. By using theophylline as a model compound we have gained some understanding of the kinetics of the solvent-mediated phase transformation between the metastable anhydrous form and the stable hydrated form of an organic compound and we were able to model the transformation process. By identifying the mechanisms for nucleation, growth of the hydrate form and the dissolution of the anhydrous form one can predict and control the transformation process. The growth kinetics of thymine monohydrate crystals at various temperatures are also investigated in the present study.

Page generated in 0.1016 seconds