Spelling suggestions: "subject:"crystal structures"" "subject:"krystal structures""
1 |
The structural and spectroscopic characterisation of 2-aryl and 2-heteroaryl isatogensStoddart, Barry January 1990 (has links)
This work reviews the current knowledge of the synthesis , properties , structures and biological activities of isatogens. The unequivocal 2 C NMR assignment of 2-phenylisatogen 1S reported and used to assign the spectra for a range of 2-(4-substituted-phenyl)isatogens. Molecular dynamics of 2-phenylisatogen in chloroform are reported and indicate that there is little if any inter-ring mesomeric resonance in this compound. 1~C , ~N NMR and UV-Visible spectroscopic data are reported for a range of 2-(4-substituted-phenyl)isatogens. Analysis of this data indicates a small but significant degree of inter-ring mesomeric resonance is present in these compounds especially those with strongly electron donating or withdrawing substituents. An interesting correlation is found between ~sN substituent chemical shifts and molar absorbtivity of the visible transitions. The X-ray crystal structure of 2-(4-chlorophenyl)isatogen is reported and shows a small but significant shortening of the inter-ring bond length compared to 2-phenylisatogen , further supporting the hypothesis of inter-ring mesomeric resonance in these compounds. 1 H and ~C NMR data are reported for the 2-(pyrid-2-inium)isatogen cation and indifate the presence of intramolecular interaction between the ~---H and N~O groups in the molecule. The X-ray crystal structure of the perchlorate salt of the cation and the ~H solid state NMR spectrum both support this conclusion. The molecular structure indicates that the intramolecular interaction is comprised of coulombic and hydrogen bonding interactions leading to a near coplanar structure for the cation compared to the noncoplanar structure for the parent base, 2-(pyrid-2-yl)isatogen. A hypothesis is put forward to explain molecular packing and configuration differences in 2-heteroarylisatogens. The molecular packing and configuration is controlled by a balance of intermolecular dipole attraction and repulsion. Predictions of molecular packing and configuration are made for a number of 2-heteroarylisatogens. The X-ray crystal structure of 2-(pyrid-3-yl)isatogen is reported and found to be in complete agreement with the predictions of the hypothesis. Further studies are proposed involving the synthesis of ~N and ~~O labelled isatogens , the study of inclusion complexes with cyclodextrins and the study of isatogens with the potential for increased mesomeric interactions. ,
|
2 |
Computer simulation of colloidal suspensionsEldridge, Matthew David January 1993 (has links)
No description available.
|
3 |
Molecular orientation in poly (aryl ether ether ketone)Dingley, Alison Mary January 1991 (has links)
No description available.
|
4 |
The crystal structure of Tri-(p-aminophenyl) carbonium PerchlorateKoh, Lip Lin January 1964 (has links)
Thesis (Ph.D.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / An X-ray diffraction study of tri-(p-aminophenyl) carbonium perchlorate, (H2NC6H4)3C.ClO4, was carried out in order to determine (1) the effects of substituents on the structure of triphenylcarbonium ion, and (2) the effect of crystal symmetry on the configuration of the triarylcarbonium ions. [TRUNCATED] / 2031-01-01
|
5 |
New Structure Types among Copper Chalcogenides by Mixing Tellurium with Sulfur or SeleniumOottil, Mayasree January 2010 (has links)
There is evidence for the existence of non-classical bonding in several binary antimonides, selenides, and tellurides. Owing to such non-classical bonding, some of these solid materials exhibit exciting semiconducting and thermoelectric properties, which make them attractive from a technological view point. However, lack of efficiency is a serious limitation in most of those thermoelectrics. It is very crucial, hence, to find new materials with superior properties and understand the structure and bonding in such materials, in order to facilitate the fine-tuning of the physical properties. With this expectation, several quaternary barium copper chalcogenides are synthesized and characterized in the present study. The chalcogen elements, selenium tellurium, are used in various ratios, in order to understand and tune the binding interactions. Extensive single crystal x-ray diffraction studies are expected to reveal the minute details of the bonding interactions together with electronic structure calculation and physical property measurements. In addition, characterization techniques such as powder x-ray diffraction, electron microscopy, differential scanning calorimetry, thermopower and conductivity measurements are utilized.
The ternary and quaternary chalcogenides, Ba₂Cu₄₋ₓSeyTe₅₋y were synthesized from the elements in stoichiometric ratios at 700°C, followed by annealing at 600°C. The ternary telluride Ba₂Cu₄₋ₓTe₅ crystallizes in a new structure type, space group C2/c, with lattice dimensions of a = 9.4428(6) Å, b = 9.3289(6) Å, c = 13.3028(8) Å, β = 101.635(1)°, V = 1147.8(1) Å3, for x = 0.75(1) (Z = 4). The corresponding selenide-telluride adopts another new, but strongly related, structure type, space group P4₁2₁2, with a = 6.5418(3) Å, c = 25.782(2) Å, V = 1103.3(1) Å3, for Ba₂Cu₃.₂₆₍₂₎Se₀.₇₂₉₍₈₎Te₄.₂₇₁ (Z = 4). Between 0.13 and 1.0 Te per formula unit can be replaced with Se, while the Cu content appears to vary only within 0.67 ≤ x ≤ 0.81 for Ba₂Cu₄₋ₓSeyTe₅₋y. Despite crystallizing in different crystal systems, the telluride and the selenide-telluride exhibit topologically equivalent structure motifs, namely chains of Cu(Se,Te)₄ tetrahedra with a Cu atom cis/trans chain as well as an almost linear Te atom chain. All these chalcogenides - as far as measured - are p-doped semiconductors, as determined by Seebeck coefficient and electrical conductivity measurements.
Two new orthorhombic chalcogenides, Ba₂Cu₆₋ₓSeyTe₅₋y and Ba₂Cu₆₋ₓSyTe₅₋y were synthesized at 800°C. They are isostructural and crystallize in a new structure type, with space group Pbam. Ba₂Cu₆₋ₓSyTe₅₋y, with a = 9.6560(6) Å, b = 14.0533(9) Å, c = 4.3524(3) Å and Ba₂Cu₅.₆₄Se₁.₀₉Te₃.₉₁with a = 9.7048(6) Å, b = 14.1853(9) Å, c = 4.3840(3) Å. They have Cu6 units extending along c-axis, and two such units are interconnected by S or Se atoms along a-axis. These compounds are nonmetallic with low Seebeck coefficients.
Two more new quaternary chalcogenides were uncovered, BaCu₅.₉₂₆₍₁₅₎SeTe₆ and BaCu₅.₇₂₍₁₆₎Se₀.₄₆₄₍₁₅₎Te₆.₅₃₆ with a = 6.9680(2) Å and a = 6.9888(4) Å, respectively, in space group Pm̅3. These compounds have basic Cu₈Te₁₂ frameworks, which can be an important feature for thermoelectric materials. Ba occupies the void. One Cu atom from each cage cluster of eight such cages forms a Cu₈ cube with Se atom occupying it. BaCu₅.₉SeTe₆ was experimentally determined to be p-type doped semiconductor with moderate Seebeck coefficient value.
|
6 |
New Structure Types among Copper Chalcogenides by Mixing Tellurium with Sulfur or SeleniumOottil, Mayasree January 2010 (has links)
There is evidence for the existence of non-classical bonding in several binary antimonides, selenides, and tellurides. Owing to such non-classical bonding, some of these solid materials exhibit exciting semiconducting and thermoelectric properties, which make them attractive from a technological view point. However, lack of efficiency is a serious limitation in most of those thermoelectrics. It is very crucial, hence, to find new materials with superior properties and understand the structure and bonding in such materials, in order to facilitate the fine-tuning of the physical properties. With this expectation, several quaternary barium copper chalcogenides are synthesized and characterized in the present study. The chalcogen elements, selenium tellurium, are used in various ratios, in order to understand and tune the binding interactions. Extensive single crystal x-ray diffraction studies are expected to reveal the minute details of the bonding interactions together with electronic structure calculation and physical property measurements. In addition, characterization techniques such as powder x-ray diffraction, electron microscopy, differential scanning calorimetry, thermopower and conductivity measurements are utilized.
The ternary and quaternary chalcogenides, Ba₂Cu₄₋ₓSeyTe₅₋y were synthesized from the elements in stoichiometric ratios at 700°C, followed by annealing at 600°C. The ternary telluride Ba₂Cu₄₋ₓTe₅ crystallizes in a new structure type, space group C2/c, with lattice dimensions of a = 9.4428(6) Å, b = 9.3289(6) Å, c = 13.3028(8) Å, β = 101.635(1)°, V = 1147.8(1) Å3, for x = 0.75(1) (Z = 4). The corresponding selenide-telluride adopts another new, but strongly related, structure type, space group P4₁2₁2, with a = 6.5418(3) Å, c = 25.782(2) Å, V = 1103.3(1) Å3, for Ba₂Cu₃.₂₆₍₂₎Se₀.₇₂₉₍₈₎Te₄.₂₇₁ (Z = 4). Between 0.13 and 1.0 Te per formula unit can be replaced with Se, while the Cu content appears to vary only within 0.67 ≤ x ≤ 0.81 for Ba₂Cu₄₋ₓSeyTe₅₋y. Despite crystallizing in different crystal systems, the telluride and the selenide-telluride exhibit topologically equivalent structure motifs, namely chains of Cu(Se,Te)₄ tetrahedra with a Cu atom cis/trans chain as well as an almost linear Te atom chain. All these chalcogenides - as far as measured - are p-doped semiconductors, as determined by Seebeck coefficient and electrical conductivity measurements.
Two new orthorhombic chalcogenides, Ba₂Cu₆₋ₓSeyTe₅₋y and Ba₂Cu₆₋ₓSyTe₅₋y were synthesized at 800°C. They are isostructural and crystallize in a new structure type, with space group Pbam. Ba₂Cu₆₋ₓSyTe₅₋y, with a = 9.6560(6) Å, b = 14.0533(9) Å, c = 4.3524(3) Å and Ba₂Cu₅.₆₄Se₁.₀₉Te₃.₉₁with a = 9.7048(6) Å, b = 14.1853(9) Å, c = 4.3840(3) Å. They have Cu6 units extending along c-axis, and two such units are interconnected by S or Se atoms along a-axis. These compounds are nonmetallic with low Seebeck coefficients.
Two more new quaternary chalcogenides were uncovered, BaCu₅.₉₂₆₍₁₅₎SeTe₆ and BaCu₅.₇₂₍₁₆₎Se₀.₄₆₄₍₁₅₎Te₆.₅₃₆ with a = 6.9680(2) Å and a = 6.9888(4) Å, respectively, in space group Pm̅3. These compounds have basic Cu₈Te₁₂ frameworks, which can be an important feature for thermoelectric materials. Ba occupies the void. One Cu atom from each cage cluster of eight such cages forms a Cu₈ cube with Se atom occupying it. BaCu₅.₉SeTe₆ was experimentally determined to be p-type doped semiconductor with moderate Seebeck coefficient value.
|
7 |
Diffusion through strained semiconductorsAllen, Elizabeth D. January 1998 (has links)
No description available.
|
8 |
In situ diffraction studies of electrode materials for Li-ion and Na-ion batteries / Etudes de diffraction in situ pour matériaux d'électrode en batteries Li-ion et Na-ionBianchini, Matteo 23 October 2015 (has links)
Ce travail vise à étudier les matériaux d'électrodes pour batteries Li-ion et Na-ion lors qu’ils fonctionnent à l'intérieur des batteries. Afin de comprendre l'évolution structurelle des matériaux alors que les ions Li+ ou Na+ sont insérés/extraits de leur cadre, on utilise principalement la diffraction, exploitant neutrons, rayons X et le rayonnement synchrotron (SR). Nous avons adopté une approche combinée des mesures ex situ, in situ et operando. Au début, nous avons conçu une cellule électrochimique pour mesures in situ de diffraction de neutrons sur poudre (NPD), avec un alliage en (Ti,Zr) "transparent aux neutrons"; cette cellule s'est ajoutée à l’ensemble de nos outils pour effectuer des études de type operando. Nous avons démontré leur faisabilité en utilisant LiFePO4, montrant de bonnes performances électrochimiques et des données NPD de haute qualité pour affinements structurales Rietveld. Ensuite, nous avons réalisé des études des spinelles Li1+xMn2-xO4 (x=0,0.05,0.10) et LiNi0.4Mn1.6O4: pendant le cyclage, nous avons rapporté des évolutions structurelles, des diagrammes de phases et paramètres subtils tels que le comportement du Li, ou les facteurs de température. L’utilisation complémentaire du SR a clarifié la nature de la phase ordonnée Li0.5Mn2O4. Nos études combinées ont concernées d’autres matériaux d'électrodes prometteurs: LiVPO4O et Na3V2(PO4)2F3. Les 2 révèle des comportements complexes pendant la (de)intercalation du Li+/Na+. Les données de haute qualité ont permis des analyses quantitatives, dévoilant la structure d'un grand nombre des phases ordonnées et menant à la compréhension du comportement des cations dans ces matériaux / This work aims at studying electrode materials for Li-ion and Na-ion batteries as they function inside batteries. Diffraction is the mainly used technique, exploiting neutrons, X-Rays and synchrotron radiation (SR), to obtain insights on the structural evolution of such materials as Li+ or Na+ are inserted/extracted from their framework. We adopted a combined approach of ex situ, in situ and operando measurements to extract a maximum of information from our studies. At first, we designed an electrochemical cell for in situ neutron powder diffraction (NPD) measurements, featuring a “neutron-transparent” (Ti,Zr) alloy; this cell, joined to others previously developed in our group, gave us a complete set of tools to perform our studies. We demonstrated the feasibility of operando NPD using LiFePO4, showing good electrochemical performances and high-quality NPD patterns for Rietveld structural refinements. Then we carried out detailed studies of spinels Li1+xMn2-xO4 (x = 0, 0.05, 0.10) and LiNi0.4Mn1.6O4: we reported phase diagrams, structural evolutions and subtle parameters as lithium's behavior inside the spinel framework, or thermal displacement parameters, directly upon cycling. Complementary use of SR shed light on other features, as the nature of the ordered phase Li0.5Mn2O4. Our combined studies concerned other promising electrode materials: LiVPO4O and Na3V2(PO¬4)2F3. Both revealed complex behaviors upon Li+/Na+
|
9 |
An Investigation of the Crystal Structures of α and β-Cu2P2O7Robertson, Beverly Ellis 05 1900 (has links)
<p> A high temperature polymorph of α-Cu2P2O7 was found above 70°C.
The lattice parameters and space groups of both phases were determined
from X-ray photographs. The crystal structures of α and β-Cu2P2O7 were
refined by crystallographic least squares analysis and the molecular
geometry obtained was compared with that of other closely related compounds of the transition metal ion pyrophosphate series. The central oxygen atom was found to have enhanced thermal motion or disorder in agreement with I.R. spectroscopic studies of Lazarev. The bond lengths obtained for the P2O7^4- ion were discussed in reference to values predicted by Cruickshank. Evidence of a Jahn-Teller effect was found in the case of the Cu++ ion. A description is given of a relatively efficient method
of measuring intensities of Bragg reflections, using a single crystal
diffractometer.</p> / Thesis / Master of Science (MSc)
|
10 |
Characterising organic hydrogen bondsNobeli, Irene January 1999 (has links)
No description available.
|
Page generated in 0.1059 seconds