• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrogéologie des zones de faille du socle cristallin : implications en terme de ressources en eau pour le Massif Armoricain / Fault zone hydrogeology in crystalline media : implication in term of groundwater ressources for the Armorican Massif

Roques, Clément 22 November 2013 (has links)
Les régions de socle cristallin, pourtant largement représentées à l'échelle mondiale, sont réputées pour leurs modestes ressources en eaux souterraines. La valorisation des eaux souterraines dans les régions de socle est majoritairement limitée aux formations altérées et fissurées de sub-surface. Cependant, ces ressources sont souvent négligées au profit des eaux de surface en raison de leurs faibles débits d'exploitation et de leurs vulnérabilités aux polluants anthropiques. De récentes études de prospection et de recherche ont révélé la présence de ressources souterraines importantes, au delà des horizons superficiels classiquement exploités. Cependant peu d'informations spécifiques à ces ressources profondes sont disponibles, notamment concernant la structure des systèmes aquifères et leurs particularités hydrogéologiques. Par cette étude nous mettons clairement en évidence la présence de ressources en eau conséquentes dans le socle cristallin profond du Massif Armoricain. Ces ressources sont associées à des systèmes de failles assurant des capacités de drainage des réservoirs de stockage connectés. Les réservoirs de stockage superficiels et bordiers assurent l'alimentation en eau du réseau de fracture principal. Cette capacité de drainage est dépendante de la géométrie du plan de faille perméable. Les failles sub-horizontales sont les structures les plus efficaces dans cette fonction. Le stockage dans les formations bordières au système de faille apparaît déterminant pour assurer un débit d'exploitation conséquent. Cette étude permet d'établir une conceptualisation générale de ces systèmes de faille, tant d'un point de vue hydrodynamique que géochimique, et apporte des pistes de réflexions pour la gestion et la protection de telles ressources en eau. / Crystalline basement regions, although largely represented at continental scale, are characterized by a low groundwater resources availability. Groundwater in crystalline areas appear to be mostly limited to weathered and fractured reservoirs at sub-surface depths. But these resources are often disregarded in favor of surface water because of low yields and their vulnerability to anthropogenic contaminants. Recent specific studies have revealed the presence of significant groundwater resources beyond the superficial reservoirs traditionally exploited. However, only few specific information is available concerning these type of resources, especially concerning their structural aquifer morphology and their hydrogeological properties. This study demonstrates the presence of substantial groundwater resources in the Armorican Massif crystalline basement. These resources are associated to fault systems providing drainage capacity of connected reservoir storage. Water supply of the main permeable fault domain during pumping is ensured by sub-surface and burdened reservoir storage. The drainage capacity is dependent on the geometry of the main permeable fault. Sub-horizontal faults are the most efficient structures to warrant this function. Storage in burdened formations of the fault system appears to ensure high groundwater yield. This study establishes hydrodynamic and geochemical conceptualization of a fault system, and provides thinking points in term of management and protection to ensure groundwater resources availability.
2

Modélisation et caractérisation expérimentale du transport de chaleur en milieu fracturé / Modelling and experimental characterization of thermal transport in fractured media

La Bernardie, Jérôme de 06 December 2017 (has links)
Les milieux cristallins fracturés constituent un potentiel géothermique non négligeable. Il est essentiel d'améliorer son exploitation, pour la géothermie basse et haute énergie, afin de répondre au processus de transition énergétique. Pour cela, la compréhension des mécanismes de transport thermique dans les milieux fracturés est fondamentale. Le transport de chaleur est fortement influencé par l'hétérogénéité hydrodynamique des milieux fracturés et par la géométrie des fractures et des blocs matriciels. A travers des travaux basés sur des développements analytiques et numériques ainsi que des expériences sur site, l'objectif de cette thèse est ainsi de mieux évaluer l'impact de la géométrie des fractures, que ce soit à l'échelle d'un réseau de fractures, ou à l’échelle d’une fracture, sur le transport et le stockage d’énergie thermique dans les milieux cristallins fracturés. Des simulations numériques du transport de chaleur dans un réseau simple de fractures planes et bien connectées ont permis de caractériser l'impact de la géométrie du système de fractures sur le stockage thermique. Deux régimes sont mis en évidence. Tout d'abord, à court terme, la densité de fractures ou de chemins préférentiels, caractérisant la surface d'échange, contrôle l'échange thermique. Puis, à long terme, c'est le volume de roche total entre les fractures qui contrôle le stockage thermique. Ce modèle ne prend toutefois pas en compte la variabilité des ouvertures à l'échelle de la fracture qui est particulièrement présente dans les réseaux de fractures naturels. Des tests de traçage thermique et de soluté ont ainsi été réalisés pour caractériser le transport de chaleur dans un milieu fracturé sur le site de Ploemeur (SNO H+). Pour interpréter les traçages, les expressions analytiques du retard et de l'amplitude du pic de la courbe de restitution thermique ont été développées pour différentes géométries de fractures : fractures planes et chenaux. Ces expressions constituent un outil puissant et novateur pour caractériser la géométrie des fractures lors de tests de traçage thermique mais aussi pour prédire le déplacement du front thermique et la durée de vie des systèmes géothermiques à partir de tests de traçage de soluté. La comparaison de ces expressions avec les résultats expérimentaux permet de mettre en évidence l'importante chenalisation des flux, induisant l'arrivée anticipée du traceur thermique. / Fractured crystalline media has a significant geothermal potential. Its exploitation, for low and high enthalpy geothermal power generation, could be enhanced to satisfy the energy transition process. For this, understanding thermal transport processes in fractured media is fundamental. Heat transport is strongly influenced by hydrodynamics heterogeneity of fractured media and by fracture and matrix block geometry. Through analytical and numerical modelling and field site experiments, the aim of this thesis is thus to better assess the impact of fracture geometry on thermal transport and storage in fractured crystalline rock, at fracture and fracture network scale. Numerical simulations of heat transport in a simple network of well connected plane fractures allowed us to characterize the impact of the fracture system geometry on thermal storage. Two regimes are highlighted. First, at short term, the density of fractures, or preferential paths, controls heat exchanges. Then at long term, the total rock volume between the fractures controls thermal storage. This model does not take into account the aperture variability at fracture scale, which is particularly present in natural fracture networks. Thus, thermal and solute tracer tests have been achieved to characterize heat transport in a fractured media at Ploemeur field site (SNO H +). To interpret the tracer tests, analytical expressions of thermal breakthrough peak retardation and amplitude have been developed for different fracture geometries : parallel plate fractures and channels. Those expressions are a powerful and innovative tool to characterize fracture geometries from thermal tracer tests, and also to predict thermal front transit time and lifetime of geothermal systems from solute tracer tests. Confrontation of those expressions to experimental results shows that observed differences between thermal and solute breakthrough can be explained only by channeling flow inducing low thermal transit times.

Page generated in 0.0888 seconds