Spelling suggestions: "subject:"crystalline representation"" "subject:"erystalline representation""
1 |
Relèvements cristallins de représentations galoisiennes / Crystalline raising in Galois representationsMuller, Alain 04 November 2013 (has links)
L’objet de cette thèse est de démontrer que pour certaines représentations p : GK −! GLn(Fp) continues de GK, il existe un relèvement r : GK −! Gln (Zp) de p en une représentation cristalline. C’est un problème purement local, tout comme les méthodes utilisées pour le résoudre. / In this thesis, we prove that certain representations of the absolute Galois group of a finite extension of Qp with coefficients in Fp lift to crystalline representation with coefficients in Zp.
|
2 |
THE REDUCTION OF CERTAIN TWO DIMENSIONAL SEMISTABLE REPRESENTATIONSYifu Wang (16644759) 07 August 2023 (has links)
<p>Let p be a prime number and F be a finite extension of Q<sub>p</sub>. We established an algorithm to compute the semisimplification of the reduction of some irreducible two dimensional crystalline representations with two parameter {h,a<sub>p</sub>} when v<sub>p</sub>(a<sub>p</sub>) is large enough. We improve the known results when p|h. We also extend the algorithm to the two dimensional semistable and non-crystalline representation. We compute the semi-simplification of the reduction when v<sub>p</sub>(L) large enough and p=2. These results solve the difficulties with the case p=2. The strategies are based on the study of the Kisin modules over O<sub>F</sub> and Breuil modules over S<sub>F</sub>. By the theory of Breuil and Theorem of Colmez-Fontaine, these modules are closely related to semistable representations.</p>
|
3 |
Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global / P-adic modular forms over unitary Shimura curves and local-global compatibilityDing, Yiwen 19 March 2015 (has links)
Cette thèse s'inscrit dans le cadre du programme de Langlands local p-adique. Soient L une extension finie de Q_p, \rho_L une représentation p-adique de dimension 2 du groupe de Galois Gal(\overline{Q_p}/L) de L, lorsque \rho_L provient d'une représentation \rho globale et modulaire (i.e. \rho apparaît dans la cohomologie étale des courbes de Shimura), on sait associer à \rho une représentation de Banach admissible de \GL_2(L), notée \widehat{\Pi}(\rho), en utilisant la théorie de la cohomologie étale complétée d'Emerton. Localement, lorsque \rho_L est cristalline (et assez générique), d'après Breuil, on sait associer à \rho_L une représentation localement analytique de \GL_2(L), notée \Pi(\rho_L). Dans cette thèse, on montre divers résultats sur la compatibilité entre les représentations \widehat{\Pi}(\rho) et \Pi(\rho_L), qui s'appelle la compatibilité local-global, dans la cas des courbes de Shimura unitaires. Par la théorie des représentations localement analytiques de \GL_2(L), le problème de compatibilité local-global se ramène à l'étude des variétés de Hecke X construites à partir du H^1-complété des courbes de Shimura unitaires. On montre des résultats sur la compatibilité local-global dans le cas non-critique en utilisant la théorie de la triangulation globale. On étudie ainsi les formes modulaires p-adiques sur les courbes de Shimura unitaires, à partir desquelles on peut construire des sous-espaces rigides de X à la manière de Coleman-Mazur. On montre l'existence des formes compagnons surconvergentes sur les courbes de Shimura unitaires en utilisant les théorèmes de comparaison p-adique, d'où on déduit des résultats sur la compatibilité local-global dans le cas critique. / The subject of this thesis is in the p-adic Langlands programme. Let L be a finite extension of \Q_p, \rho_L a 2-dimensional p-adic representation of the Galois group \Gal(\overline{\Q_p}/L) of L, if \rho_L is the restriction of a global modular Galois representation \rho (i.e. \rho appears in the étale cohomology of Shimura curves), one can associate to \rho an admissible Banach representation \widehat{\Pi}(\rho) of \GL_2(L) by using Emerton's completed cohomology theory. Locally, if \rho_L is crystalline (and sufficiently generic), following Breuil, one can associate to \rho_L a locally analytic representation \Pi(\rho_L) of \GL_2(L). In this thesis, we prove results on the compatibility of \widehat{\Pi}(\rho) and \Pi(\rho_L), called local-global compatibility, in the unitary Shimura curves case. By locally analytic representations theory (for \GL_2(L)), the problem of local-global compatibility can be reduced to the study of eigenvarieties X constructed from the completed H^1 of unitary Shimura curves. We prove results on local-global compatibility in non-critical case by using global triangulation theory. We also study the p-adic modular forms over unitary Shimura curves, from which we construct some closed rigid subspaces of X by Coleman-Mazur's method. We prove the existence of overconvergent companion forms (over unitary Shimura curves) by using p-adic comparison theorems, from which we deduce some results on local-global compatibility in critical case.
|
4 |
Produits tensoriels en théorie de Hodge p-adique / Tensor products in p-adic Hodge theoryDi Matteo, Giovanni 12 December 2013 (has links)
Soient K/Qp une extension finie et GK le groupe de Galois absolu de K. Cette thèse est consacrée à l'étude de produits tensoriels cristallins (ou semi-stables, ou de de Rham, ou de Hodge-Tate) de représentations p-adiques de GK,, ainsi que de produits tensoriels triangulins de représentations p-adiques de GK. On étudie également la situation où l'image d'une représentation p-adique par un foncteur de Schur (tel Symn ou Λn) est cristalline (ou semi-stable, ou de de Rham, ou de Hodge-Tate). Les résultats présentés dans cette thèse sont énoncés pour les B-paires, et ils s'appliquent donc en particulier aux représentations p-adiques. / Let K/Qp be a finite extension and let GK be the absolute Galois group of K. This thesis is devoted to the study of crystalline (as well as semi-stable, de Rham, or Hodge-Tate) tensor products of p-adic representations of GK, as well as trianguline tensor products of p-adic representations of p-adic representations of GK. We also study the situation when the image of a p-adic representation by a Schur functor (for example, Symn or Λn) is crystalline (or semi-stable, or de Rham, or Hodge-Tate). The results presented in this thesis are stated for B-pairs, and apply in particular to p-adic representations.
|
Page generated in 0.1528 seconds