• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 481
  • 152
  • 129
  • 97
  • 19
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 11
  • 10
  • 9
  • 8
  • Tagged with
  • 1110
  • 173
  • 144
  • 87
  • 86
  • 86
  • 80
  • 73
  • 70
  • 66
  • 65
  • 63
  • 62
  • 62
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Crystallization of amorphous solid films

Safarik, Douglas Joseph. January 2003 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
132

Crystallization of amorphous solid films

Safarik, Douglas Joseph 25 July 2011 (has links)
Not available / text
133

Dynamic simulation and control of crystal-size distribution in a continuous crystallizer

Sharnez, Rizwan, 1960- January 1987 (has links)
No description available.
134

Simulation of staged classified recycle crystallizers

Tan, Chung-Sung, 1950- January 1977 (has links)
No description available.
135

Biophysical and Structural Studies of Lipopeptide Detergents

Ghanei, Hamed 09 January 2014 (has links)
Biochemical and structural studies of membrane protein usually require their stabilization in solution with detergents. However, purified membrane proteins often show reduced activity and stability in traditional detergents. Lipopeptide detergents (LPDs) are a new class of engineered amphiphiles that from small micelles and mimic the lipid bilayer more closely than traditional detergents. An LPD molecule consists of an α-helical peptide with fatty acyl chains covalently attached to both ends. These molecules self-assemble into cylindrical micelles with a hydrophilic exterior and a hydrophobic interior made up of the fatty acyl chains. Here we present the biophysical and biochemical properties of a model bacterial ABC transporter, MsbA, in different LPD variations. Four types of LPD molecules have been synthesized and have been categorized as original LPD, LPD5Q, LPD2, and LPD4 based on the peptide sequence. Dynamic light scattering, thermal aggregation, and ATPase activity were used to measure the biophysical properties of MsbA in LPDs and in a traditional detergent, n-decyl-β-D-maltoside (DM). The results show that MsbA-LPD particles are monodisperse with small hydrodynamic radii. When compared to DM, MsbA is thermodynamically more stable and has higher catalytic activity in LPDs. Membrane proteins have favorable biophysical properties in LPDs, suggesting that these detergents resemble the native lipid bilayer environment more closely. We also present crystal structures of three LPDs: LPD-12, LPD5Q-14 and LPD- 14. These structures reveal that LPD micelles are highly ordered with varying oligomeric states. The octomeric structure of the LPD-12 micelle is composed of four sets of antiparallel coiled-coil dimers, while the LPD5Q-14 micelle assembles as a nonamer of three trimers each with an “up-up-down” topology. The LPD-14 micelle, on the other hand, is a dodecamer of three tetramers with all helices assuming an antiparallel orientation. Overall, the structures of LPDs show highly ordered detergent micelles that are made up of repeated building blocks. Based on these results, we propose that LPDs can sample multiple conformational states, but the number of accessible conformations is significantly reduced relative to traditional detergents. Our results show that LPDs are an alternative platform for in vitro studies of membrane proteins. Future studies will focus on the crystallization of membrane proteins in LPDs and the further characterization of these complexes.
136

Biophysical and Structural Studies of Lipopeptide Detergents

Ghanei, Hamed 09 January 2014 (has links)
Biochemical and structural studies of membrane protein usually require their stabilization in solution with detergents. However, purified membrane proteins often show reduced activity and stability in traditional detergents. Lipopeptide detergents (LPDs) are a new class of engineered amphiphiles that from small micelles and mimic the lipid bilayer more closely than traditional detergents. An LPD molecule consists of an α-helical peptide with fatty acyl chains covalently attached to both ends. These molecules self-assemble into cylindrical micelles with a hydrophilic exterior and a hydrophobic interior made up of the fatty acyl chains. Here we present the biophysical and biochemical properties of a model bacterial ABC transporter, MsbA, in different LPD variations. Four types of LPD molecules have been synthesized and have been categorized as original LPD, LPD5Q, LPD2, and LPD4 based on the peptide sequence. Dynamic light scattering, thermal aggregation, and ATPase activity were used to measure the biophysical properties of MsbA in LPDs and in a traditional detergent, n-decyl-β-D-maltoside (DM). The results show that MsbA-LPD particles are monodisperse with small hydrodynamic radii. When compared to DM, MsbA is thermodynamically more stable and has higher catalytic activity in LPDs. Membrane proteins have favorable biophysical properties in LPDs, suggesting that these detergents resemble the native lipid bilayer environment more closely. We also present crystal structures of three LPDs: LPD-12, LPD5Q-14 and LPD- 14. These structures reveal that LPD micelles are highly ordered with varying oligomeric states. The octomeric structure of the LPD-12 micelle is composed of four sets of antiparallel coiled-coil dimers, while the LPD5Q-14 micelle assembles as a nonamer of three trimers each with an “up-up-down” topology. The LPD-14 micelle, on the other hand, is a dodecamer of three tetramers with all helices assuming an antiparallel orientation. Overall, the structures of LPDs show highly ordered detergent micelles that are made up of repeated building blocks. Based on these results, we propose that LPDs can sample multiple conformational states, but the number of accessible conformations is significantly reduced relative to traditional detergents. Our results show that LPDs are an alternative platform for in vitro studies of membrane proteins. Future studies will focus on the crystallization of membrane proteins in LPDs and the further characterization of these complexes.
137

The purification and crystallization of guanine diphosphomannose mannosyl hydrolase

Habel, Jeffrey Edward 08 1900 (has links)
No description available.
138

Preliminary crystallization and characterization of lectin-sugar complex

Li, Mi 05 1900 (has links)
No description available.
139

Static recrystallization of austenite between intervals of high temperature deformation.

Djaić, Ruz̆ical Aleksandra Petković. January 1971 (has links)
No description available.
140

Molecular control of liquid crystalline orientation of poly(2,6-benzoxazole)

Khamvongsa, Bryan January 1993 (has links)
No description available.

Page generated in 0.1264 seconds