• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemically Optimized Cu Etch Bath Systems for High-Density Interconnects and the FTIR Operando Exploration of the Nitrogen Reduction Reaction on a Vanadium Oxynitride Electrocatalyst

Caperton, Joshua M 08 1900 (has links)
Printed circuit board manufacturing involves subtractive copper (Cu) etching where fine features are developed with a specific spatial resolution and etch profile of the Cu interconnects. A UV-Vis ATR metrology, to characterize the chemical transitions, has been developed to monitor the state of the bath by an in-situ measurement. This method provides a direct correlation of the Cu etch bath and was able to predict a 35% lower etch rate that was not predicted by the three current monitoring methods (ORP, specific gravity, and conductivity). Application of this UV-Vis ATR probe confirmed that two industrial etch baths, in identical working conditions, confirmed a difference in Cu2+ concentration by the difference of the near IR 860nm peak. The scope of this probe allowed chemically specific monitoring of the Cu etch bath to achieve a successful regeneration for repeated use. Interlayer dielectrics (ILDs) provide mechanical and electrical stability to the 3D electrical interconnects found in IC devices. It is particularly important that the structural support is created properly in the multilayered architecture to prevent the electrical cross signaling in short range distances. A combined multiple internal reflection and transmission FTIR has been employed for the characterization of silicon oxycarbonitride (SiOCN) films. These dielectric low-k films incorporate various functional groups bonded to silicon and require chemical bonding insight in the transformation and curing process. Distinct SiOx bonding patterns were differentiated, and the structure of the films can be predicted based on the amount of Si network and caged species. Further optimization of the FTIR analysis must minimize interference from moisture that can impact the judgement of peak heights. To accommodate this, a high-quality glove box was designed for dry air feedthrough to achieve a 95% moisture reduction during analysis, where less than 0.1 mAbs of moisture is detected in the spectra (without additional correction). The glove box allows for the rapid analysis of multiple sample throughput to outpace alternative characterization methods while retaining low spectral noise and a dry environment for 24/7 analysis. There is a great need to identify new catalysts that are suitable for tackling current economic demands, one of which is the nitrogen reduction reaction (NRR). The development of the surface enhanced infrared absorption spectroscopy (SEIRAS) has been applied to characterize the NRR mechanisms on the vanadium oxynitride electrocatalyst. Electrochemical measurements demonstrate NRR activity that is up to three times greater in the presence of N2 than the control Ar. FTIR operando suggests that a considerable number of intermediates were formed and continued to increase in absorbing value under an applied potential of -0.8 V vs Ag/AgCl. XPS results of the post-NRR film suggest a restricting of the film where vanadium oxynitride films are prone to instabilities under the possible MvK mechanism. After 90 minutes of NRR, the NH3 generated was approximately 0.01 ppm was calculated for through the salicylate colorimetric method. On-going efforts are focusing on optimizing the vanadium oxynitride film by the tuning of the oxynitride ratios and crystalline properties to promote the formation of V≡N: during the nitrogen reduction reaction.

Page generated in 0.039 seconds