1 |
Evaporative drying of cupric-chloride droplets in a thermo-chemical cycle of hydrogen productionSlowikowski, Mateusz 01 August 2012 (has links)
In this thesis, new empirical correlations that predict the behaviour of Cupric-Chloride
droplets undergoing spraying and drying processes are developed. Cupric-Chloride is a chemical
compound with the formula CuCl2 that is present as slurry or aqueous solution within the
Copper-Chlorine (Cu-Cl) thermo-chemical cycle for generation of hydrogen. An experimental
study examines the effects of inlet air and liquid temperatures, pressure, concentration, nozzle
diameter, and liquid flow rate on the outlet air temperature, particle size, particle size
distribution, morphology, moisture content, bulk density, and flowability.
The analysis examines a single droplet of CuCl2 solution in a continuum drying media. The
validation of the model involves comparisons with experimental data from previous studies
of different fluids based on non-dimensional analysis. The study provides new information
about the effects of different concentrations of water in the CuCl2 slurry drying at low to
moderate air temperatures.Analytical correlations of heat and mass transfer are developed for the
aqueous solution, subject to various drying conditions. The analysis is performed for moist air in
contact with a sprayed aqueous solution of Copper (II) Chloride Dihydrate [CuCl2 ·(2H2O)].
Validation of the model is performed by comparisons with experimental results. / UOIT
|
2 |
Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycleOzbilen, Ahmet Ziyaettin 01 December 2010 (has links)
The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production.
In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement.
Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the four-step Cu-Cl cycle. / UOIT
|
Page generated in 0.0201 seconds