• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat Treatment Effects on Mechanical Behavior of Cu-15Ni-8Sn Produced via Powder Metallurgy

Caris, Joshua 18 July 2007 (has links)
No description available.
2

Étude métallurgique et optimisation de la fabrication d'alliages à base de cuivre coulés en continu : analyse de la ségrégation et des phénomènes de précipitation dans les alliages CuNi15Sn8, CuNi6Si1.8Cr, CuTi3Al2 et CuTi3Sn2.75

Lebreton, Valérie 29 June 2007 (has links) (PDF)
Les alliages de cuivre au béryllium, caractérisés par un durcissement structural, sont de par leurs propriétés mécaniques proches de certains aciers (Rm#1230MPa, Re0.2#1060MPa, A%#6.5 à l'état trempé écroui revenu). D'autre part, ils présentent de hautes conductivités thermiques et électriques (22%I.A.C.S), une bonne résistance à l'usure et à la corrosion, et ils sont amagnétiques. La conjugaison de ces différentes propriétés permet aux alliages de Cu-Be d'accéder à une large une gamme d'applications (disques de frein pour les avions, électrodes de soudage, ressort Bourdon de la source pour manomètre, cordes de guitare etc.).Cependant, en plus du coût élevé du béryllium, le principal inconvénient de ces alliages est la présence d'oxyde de béryllium qui est nocif lorsqu'il est inhalé sous forme de poudre ou de vapeur. Malgré toutes les précautions qui peuvent être prises pendant l'élaboration de ces matériaux, le risque demeure. En conséquence, pour préserver des conditions environnementales saines, une politique de recherche d'alliages de substitution possédant des propriétés physiques et mécaniques aussi remarquable que les alliages de Cu-Be a été menée. Au terme d'une étude bibliographique deux principales familles d'alliages riches en cuivre se sont distinguées pour leurs propriétés mécaniques comparables à celles développées par les alliages Cu-Be riches en cuivre : les systèmes Cu-Ni-X (X=Sn, Si) et Cu-Ti-X(X=Al,Sn) dans le coin riche en cuivre. Néanmoins, ces alliages ne sont pas exempts de problème. Par exemple, l'étain a tendance à ségréger lors de la solidification des alliages du système Cu-Ni-Sn élaboré en coulée continue, sans compter que ces mêmes alliages présentent un faible allongement à rupture après revenu. Un autre exemple est la faible conductivité électrique des alliages Cu-Ti (<8%I.A.C.S) en comparaison avec le CuBe2. Donc, pour améliorer ces performances, une optimisation des compositions chimiques et des traitements thermiques s'est avérée nécessaire. A cette fin quatre premiers alliages ont été retenus : le CuNi15Sn8, le CuNi6Si1.8Cr, le CuTi3Al2 et le CuTi3Sn2.75. Les travaux de recherche ont débutés par une analyse microstructurale de la ségrégation et des états filés trempés de ces matériaux dans le but d'appréhender les difficultés pouvant être rencontrées lors de leur élaboration. La deuxième partie s'est axée sur les phénomènes de précipitation lors des revenus durcissants où la relation propriétés mécaniques/électriques et microstructure a été établie dans la mesure des connaissances actuelles. Le projet a ensuite été réorienté par les résultats obtenus sur chacun des alliages de référence. Ainsi, l'influence des éléments mineurs a complété l'étude du CuNi15Sn8 tandis l'affinement de la composition en éléments majeurs des alliages CuNi6Si1.8Cr, CuTi3Al2 et CuTi3Sn2.75 a été privilégié. Des alliages sont ainsi proposés pour une validation semi-industrielle avec un programme de caractérisation plus complet.
3

Diffusion-Controlled Growth of Phases in Metal-Tin Systems Related to Microelectronics Packaging

Baheti, Varun A January 2017 (has links) (PDF)
The electro–mechanical connection between under bump metallization (UBM) and solder in flip–chip bonding is achieved by the formation of brittle intermetallic compounds (IMCs) during the soldering process. These IMCs continue to grow in the solid–state during storage at room temperature and service at an elevated temperature leading to degradation of the contacts. In this thesis, the diffusion–controlled growth mechanism of the phases and the formation of the Kirkendall voids at the interface of UBM (Cu, Ni, Au, Pd, Pt) and Sn (bulk/electroplated) are studied extensively. Based on the microstructural analysis in SEM and TEM, the presence of bifurcation of the Kirkendall marker plane, a very special phenomenon discovered recently, is found in the Cu–Sn system. The estimated diffusion coefficients at these marker planes indicate one of the reasons for the growth of the Kirkendall voids, which is one of the major reliability concerns in a microelectronic component. Systematic experiments using different purity of Cu are conducted to understand the effect of impurities on the growth of the Kirkendall voids. It is conclusively shown that increase in impurity enhances the growth of voids. The growth rates of the interdiffusion zone are found to be comparable in the Cu–Sn and the Ni–Sn systems. EPMA and TEM analyses indicate the growth of a metastable phase in the Ni–Sn system in the low temperature range. Following, the role of Ni addition in Cu on the growth of IMCs in the Cu–Sn system is studied based on the quantitative diffusion analysis. The analysis of thermodynamic driving forces, microstructure and crystal structure of Cu6Sn5 shed light on the atomic mechanism of diffusion. It does not change the crystal structure of phases; however, the microstructural evolution, the diffusion rates of components and the growth of the Kirkendall voids are strongly influenced in the presence of Ni. Considering microstructure of the product phases in various Cu/Sn and Cu(Ni)/Sn diffusion couples, it has been observed that (i) phases have smaller grains and nucleate repeatedly, when they grow from Cu or Cu(Ni) alloy, and (ii) the same phases have elongated grains, when they grow from another phase. A difference in growth rate of the phases is found in bulk and electroplated diffusion couples in the Au–Sn system. The is explained in AuSn4 based on the estimated tracer diffusion coefficients, homologous temperature of the experiments, grain size distribution and crystal structure of the phase. The growth rates of the phases in the Au–Sn system are compared with the Pd–Sn and the Pt–Sn systems. Similar to the Au–Sn system, the growth rate of the interdiffusion zone is found to be parabolic in the Pd–Sn system; however, it is linear in the Pt–Sn system. Following, the effect of addition of Au, Pd and Pt in Cu is studied on growth rate of the phases. An analysis on the formation of the Kirkendall voids indicates that the addition of Pd or Pt is deleterious to the structure compared to the addition of Au. This study indicates that formation of voids is equally influenced by the presence of inorganic as well as organic impurities.

Page generated in 0.0766 seconds