• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchung zur Chemie des Deacon-Prozesses in Salzschmelzen

Tokmakov, Pavel 13 June 2018 (has links) (PDF)
HCl ist ein Nebenprodukt bei vielen organischen Chlorierungsprozessen. Die Aufarbeitung von HCl wäre wirtschaftlich sinnvoll. Eine der möglichen Optionen ist die Rückgewinnung des Chlors durch die katalytische HCl-Oxidation mit O2 (Deacon-Prozess). Das Hauptziel dieser Arbeit war es, die katalytische Aktivität von kupferchlorid-haltigen Schmelzen in Abhängigkeit von der Temperatur und dem Verhältnis der Reaktionsgase zu untersuchen. Dazu wurden Versuche unter stationären und instationären Reaktionsbedingungen im Temperaturintervall zwischen 400 und 500 °C durchgeführt. Für das bessere Verständnis des Katalysator-Systems wurde ein thermodynamisches Modell für das Stoffsystem MeCl-CuCl-CuCl2-CuO-HCl-H2O-Cl2-O2 (Me = Li, Na, K) erstellt. Weiterhin wurden mithilfe von kinetischen Untersuchungen Hinweise auf die Rolle der gelösten oxidischen Zwischenverbindungen im stufenweisen Reaktionsmechanismus gefunden. Mit den Versuchsergebnissen wurde gezeigt, dass die MeCl-CuCl-CuCl2-Schmelzen eine genügende katalytische Aktivität besitzen und damit eine Alternative zu den mit Feststoffträgern arbeitenden Katalysatoren darstellen. Zur Minderung von Korrosionsproblemen wurden mehrstufige Prozessführungen kritisch diskutiert.
2

I. Thermodynamics and Magnetism of Cu2OCl2 II. Repairs to Microcalorimeter the "2"s are subscripts, and the second 2 is preceded by a lower case L, not a one

Parry, Thomas J. 13 August 2008 (has links) (PDF)
Adiabatic calorimetry provides accurate and precise specific heat (Cp) data. From this data, thermodynamic functions may be calculated. Cu2OCl2, melanothallite, became of interest as part of a study of a particular thermochemical cycle. The experimental specific heat data and the calculated thermodynamic functions are reported here. Free energies of formation, calculated from the thermodynamic functions, suggest the particular cycle of interest with this compound as an intermediate is not feasible; uncertainty as to the accuracy of CuO and CuCl2 data used in the calculations indicate further study may be necessary. Upon collection of the specific heat data, an antiferromagnetic transition was observed at 70 K; this led to examination of the magnetic heat capacity and entropy of the transition in melanothallite. The entropy of the transition was estimated to be 18.1 % and 7.5 % of 2Rln2 by two methods. A theoretical calculation using an Ising model produced a result of 39 %. This is consistently low when compared to the entropies of the antiferromagnetic transitions of CuO and CuCl2. This suggests geometric frustration. This thesis reports the thermodynamic functions calculated from the specific heat; the examination of the magnetic entropy; and repairs to an adiabatic apparatus involved in the collection of this data.
3

Untersuchung zur Chemie des Deacon-Prozesses in Salzschmelzen

Tokmakov, Pavel 05 September 2018 (has links)
HCl ist ein Nebenprodukt bei vielen organischen Chlorierungsprozessen. Die Aufarbeitung von HCl wäre wirtschaftlich sinnvoll. Eine der möglichen Optionen ist die Rückgewinnung des Chlors durch die katalytische HCl-Oxidation mit O2 (Deacon-Prozess). Das Hauptziel dieser Arbeit war es, die katalytische Aktivität von kupferchlorid-haltigen Schmelzen in Abhängigkeit von der Temperatur und dem Verhältnis der Reaktionsgase zu untersuchen. Dazu wurden Versuche unter stationären und instationären Reaktionsbedingungen im Temperaturintervall zwischen 400 und 500 °C durchgeführt. Für das bessere Verständnis des Katalysator-Systems wurde ein thermodynamisches Modell für das Stoffsystem MeCl-CuCl-CuCl2-CuO-HCl-H2O-Cl2-O2 (Me = Li, Na, K) erstellt. Weiterhin wurden mithilfe von kinetischen Untersuchungen Hinweise auf die Rolle der gelösten oxidischen Zwischenverbindungen im stufenweisen Reaktionsmechanismus gefunden. Mit den Versuchsergebnissen wurde gezeigt, dass die MeCl-CuCl-CuCl2-Schmelzen eine genügende katalytische Aktivität besitzen und damit eine Alternative zu den mit Feststoffträgern arbeitenden Katalysatoren darstellen. Zur Minderung von Korrosionsproblemen wurden mehrstufige Prozessführungen kritisch diskutiert.:1 Einleitung. . . . . . . . . . .7 2 Theoretische Grundlagen zum Deacon-Prozess in Salzschmelzen. . . . . . . . . . .9 2.1 Thermochemie des Deacon-Prozesses. . . . . . . . . . .9 2.1.1 Oxidation von HCl mit O2 ohne Katalysator. . . . . . . . . . .9 2.1.2 Oxidation von HCl mit O2 in Gegenwart von CuCl2-haltigen Katalysatoren. . . . . . . . . . .10 2.2 Kinetik der Teilreaktionen in kupferchlorid-haltigen Salzschmelzen. . . . . . . . . . .13 2.2.1 Zersetzung des CuCl2. . . . . . . . . . .14 2.2.2 Oxidation von CuCl. . . . . . . . . . .15 2.2.3 Reaktion zwischen CuO-haltiger Schmelze und Chlorwasserstoff. . . . . . . . . . .17 3 Thermodynamische Modellierung der Mischungen aus LiCl, NaCl, KCl, CuCl und CuCl2. . . . . . . . . . .19 3.1 Thermodynamische Daten der reinen Stoffe. . . . . . . . . . .20 3.2 Mischungsmodelle. . . . . . . . . . .22 3.3 Vorgehensweise bei der Optimierung. . . . . . . . . . .25 3.4 System LiCl-NaCl-KCl. . . . . . . . . . . 25 3.5 System LiCl-CuCl. . . . . . . . . . .26 3.6 System NaCl-CuCl. . . . . . . . . . .28 3.7 System KCl-CuCl. . . . . . . . . . .29 3.8 System LiCl-CuCl2. . . . . . . . . . .30 3.9 System NaCl-CuCl2. . . . . . . . . . .33 3.10 System KCl-CuCl2 . . . . . . . . . . .34 3.11 System CuCl-CuCl2. . . . . . . . . . . 35 3.12 Ternäre Systeme. . . . . . . . . . .39 4 Untersuchungen zur CuO-Löslichkeit und der Stabilität von Oxidchloriden des Kupfers. . . . . . . . . . .46 4.1 Präparation von Cu2OCl2 und K4Cu4OCl10. . . . . . . . . . .46 4.2 Untersuchungen zur CuO-Löslichkeit. . . . . . . . . . .47 4.2.1 Thermodynamische Reaktionsdaten. . . . . . . . . . .47 4.2.2 Auswertung der Literatur. . . . . . . . . . .48 4.2.3 O2-Titration kupferchlorid-haltiger Schmelze. . . . . . . . . . .49 4.2.4 Hochtemperatur-Filtration und CuO-Analyse. . . . . . . . . . .53 4.2.5 Thermischer Zerfall von Cu2OCl2. . . . . . . . . . .55 4.2.6 Thermischer Zerfall von K4Cu4OCl10. . . . . . . . . . .57 4.3 Thermodynamische Modellierung CuO-haltiger Systeme. . . . . . . . . . .59 4.3.1 Cu2OCl2. . . . . . . . . . .59 4.3.2 K4Cu4OCl10. . . . . . . . . . .60 4.3.3 CuO-Löslichkeit. . . . . . . . . . .62 4.3.4 Salzschmelzenmodell mit oxidhaltigen Systemen. . . . . . . . . . .63 4.4 Thermochemie des Deacon-Prozesses mit Modell-Daten. . . . . . . . . . .69 5 Experimentelle Untersuchungen zur katalytischen Oxidation von HCl in Salzschmelzen. . . . . . . . . . .72 5.1 Versuchsprogramm. . . . . . . . . . .72 5.2 Allgemeine Vorgehensweise. . . . . . . . . . .72 5.2.1 Versuchsapparatur. . . . . . . . . . .72 5.2.2 Vorbereitung der Salzmischungen. . . . . . . . . . .74 5.2.3 Bestimmung der Gaszusammensetzung und Umsatzberechnungen. . . . . . . . . . .75 5.2.4 Bestimmung der Schmelzenzusammensetzung. . . . . . . . . . .77 5.2.5 Charakteristik der Reaktoreinsätze Spirale und Fritte. . . . . . . . . . .77 5.3 Versuche mit Salzmischungen auf der Basis von Kupferchlorid. . . . . . . . . . .81 5.3.1 Stationäre Strömungsverhältnisse. . . . . . . . . . .81 5.3.2 Instationäre Bedingungen. . . . . . . . . . .95 6 Vorschläge zur Technologie. . . . . . . . . . .106 7 Zusammenfassung. . . . . . . . . . .112 Literaturverzeichnis. . . . . . . . . . .115 Anhang. . . . . . . . . . .124 A.1 Thermodynamische Standard-Daten. . . . . . . . . . .124 A.2 Thermodynamische Daten für das Modell LiCl-NaCl-KCl-CuCl-CuCl2-CuO-H2O-HCl-O2-Cl2. . . . . . . . . . .126 A.3 Charakteristika der kupferoxidhaltigen Verbindungen. . . . . . . . . . .133 A.3.1 P-XRD- und Raman-Aufnahmen der synthetischen Oxidchloriden. . . . . . . . . . .133 A.3.2 O2 -Titration kupferchlorid-haltiger Schmelze. . . . . . . . . . .134 A.3.3 Thermischer Zerfall von Cu2OCl2 und K4Cu4OCl10. . . . . . . . . . .137 A.3.4 Phasendiagramm KCl-CuCl2-CuO. . . . . . . . . . .138 A.4 Katalytische Oxidation von HCl in Salzschmelzen. . . . . . . . . . .138 A.5 Physikalische Eigenschaften von (Alk-Cl)-CuCl-CuCl Salzschmelzen. . . . . . . . . . .156 A.6 Chemikalien. . . . . . . . . . .161 A.7 Geräte, Anlagen. . . . . . . . . . .162 A.8 Methode zur titrimetrischen Bestimmung von Cu+, Cu+2 und CuO. . . . . . . . . . .164 A.9 Berechnete Chlor- und Sauerstoffpartialdrücke für (Alk-Cl)-CuCl-CuCl2-Schmelzen. . . . . . . . . . .164 A.10 Berechnete Aktivitäten der geschmolzenen Kupferchloride in (Alk-Cl)-CuCl-CuCl2-Schmelzen. . . . . . . . . . .171

Page generated in 0.0328 seconds