Spelling suggestions: "subject:"cubature methods"" "subject:"cubatures methods""
1 |
Cubature methods and applications to option pricingMatchie, Lydienne 12 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: In this thesis, higher order numerical methods for weak approximation of solutions
of stochastic differential equations (SDEs) are presented. They are
motivated by option pricing problems in finance where the price of a given
option can be written as the expectation of a functional of a diffusion process.
Numerical methods of order at most one have been the most used so far and
higher order methods have been difficult to perform because of the unknown
density of iterated integrals of the d-dimensional Brownian motion present in
the stochastic Taylor expansion. In 2001, Kusuoka constructed a higher order
approximation scheme based on Malliavin calculus. The iterated stochastic
integrals are replaced by a family of finitely-valued random variables whose
moments up to a certain fixed order are equivalent to moments of iterated
Stratonovich integrals of Brownian motion. This method has been shown to
outperform the traditional Euler-Maruyama method. In 2004, this method
was refined by Lyons and Victoir into Cubature on Wiener space. Lyons and
Victoir extended the classical cubature method for approximating integrals
in finite dimension to approximating integrals in infinite dimensional Wiener
space. Since then, many authors have intensively applied these ideas and the
topic is today an active domain of research. Our work is essentially based on
the recently developed higher order schemes based on ideas of the Kusuoka
approximation and Lyons-Victoir “Cubature on Wiener space” and mostly applied
to option pricing. These are the Ninomiya-Victoir (N-V) and Ninomiya-
Ninomiya (N-N) approximation schemes. It should be stressed here that many
other applications of these schemes have been developed among which is the
Alfonsi scheme for the CIR process and the decomposition method presented
by Kohatsu and Tanaka for jump driven SDEs.
After sketching the main ideas of numerical approximation methods in
Chapter 1 , we start Chapter 2 by setting up some essential terminologies
and definitions. A discussion on the stochastic Taylor expansion based on
iterated Stratonovich integrals is presented, we close this chapter by illustrating
this expansion with the Euler-Maruyama approximation scheme. Chapter 3
contains the main ideas of Kusuoka approximation scheme, we concentrate on
the implementation of the algorithm. This scheme is applied to the pricing of
an Asian call option and numerical results are presented. We start Chapter 4
by taking a look at the classical cubature formulas after which we propose in a simple way the general ideas of “Cubature on Wiener space” also known as
the Lyons-Victoir approximation scheme. This is an extension of the classical
cubature method. The aim of this scheme is to construct cubature formulas for
approximating integrals defined on Wiener space and consequently, to develop
higher order numerical schemes. It is based on the stochastic Stratonovich
expansion and can be viewed as an extension of the Kusuoka scheme. Applying
the ideas of the Kusuoka and Lyons-Victoir approximation schemes, Ninomiya-
Victoir and Ninomiya-Ninomiya developed new numerical schemes of order 2,
where they transformed the problem of solving SDE into a problem of solving
ordinary differential equations (ODEs). In Chapter 5 , we begin by a general
presentation of the N-V algorithm. We then apply this algorithm to the pricing
of an Asian call option and we also consider the optimal portfolio strategies
problem introduced by Fukaya. The implementation and numerical simulation
of the algorithm for these problems are performed. We find that the N-V
algorithm performs significantly faster than the traditional Euler-Maruyama
method. Finally, the N-N approximation method is introduced. The idea
behind this scheme is to construct an ODE-valued random variable whose
average approximates the solution of a given SDE. The Runge-Kutta method
for ODEs is then applied to the ODE drawn from the random variable and
a linear operator is constructed. We derive the general expression for the
constructed operator and apply the algorithm to the pricing of an Asian call
option under the Heston volatility model. / AFRIKAANSE OPSOMMING: In hierdie proefskrif, word ’n hoërorde numeriese metode vir die swak benadering
van oplossings tot stogastiese differensiaalvergelykings (SDV) aangebied.
Die motivering vir hierdie werk word gegee deur ’n probleem in finansies, naamlik
om opsiepryse vas te stel, waar die prys van ’n gegewe opsie beskryf kan word
as die verwagte waarde van ’n funksionaal van ’n diffusie proses. Numeriese
metodes van orde, op die meeste een, is tot dus ver in algemene gebruik. Dit is
moelik om hoërorde metodes toe te pas as gevolg van die onbekende digtheid
van herhaalde integrale van d-dimensionele Brown-beweging teenwoordig in
die stogastiese Taylor ontwikkeling. In 2001 het Kusuoka ’n hoërorde benaderings
skema gekonstrueer wat gebaseer is op Malliavin calculus. Die herhaalde
stogastiese integrale word vervang deur ’n familie van stogastiese veranderlikes
met eindige waardes, wat se momente tot ’n sekere vaste orde bestaan. Dit is
al gedemonstreer dat hierdie metode die tradisionele Euler-Maruyama metode
oortref. In 2004 is hierdie metode verfyn deur Lyons en Victoir na volumeberekening
op Wiener ruimtes. Lyons en Victoir het uitgebrei op die klassieke
volumeberekening metode om integrale te benader in eindige dimensie na die
benadering van integrale in oneindige dimensionele Wiener ruimte. Sedertdien
het menige outeurs dié idees intensief toegepas en is die onderwerp vandag
’n aktiewe navorsings gebied. Ons werk is hoofsaaklik gebaseer op die onlangse
ontwikkelling van hoërorde skemas, wat op hul beurt gebaseer is op die
idees van Kusuoka benadering en Lyons-Victoir "Volumeberekening op Wiener
ruimte". Die werk word veral toegepas op die prysvastelling van opsies, naamlik
Ninomiya-Victoir en Ninomiya-Ninomiya benaderings skemas. Dit moet
hier beklemtoon word dat baie ander toepassings van hierdie skemas al ontwikkel
is, onder meer die Alfonsi skema vir die CIR proses en die ontbinding
metode wat voorgestel is deur Kohatsu en Tanaka vir sprong aangedrewe SDVs.
Na ’n skets van die hoof idees agter metodes van numeriese benadering in Hoofstuk
1 , begin Hoofstuk 2 met die neersetting van noodsaaklike terminologie
en definisies. ’n Diskussie oor die stogastiese Taylor ontwikkeling, gebaseer op
herhaalde Stratonovich integrale word uiteengeset, waarna die hoofstuk afsluit
met ’n illustrasie van dié ontwikkeling met die Euler-Maruyama benaderings
skema. Hoofstuk 3 bevat die hoofgedagtes agter die Kusuoka benaderings
skema, waar daar ook op die implementering van die algoritme gekonsentreer
word. Hierdie skema is van toepassing op die prysvastelling van ’n Asiatiese call-opsie, numeriese resultate word ook aangebied. Ons begin Hoofstuk 4 deur
te kyk na klassieke volumeberekenings formules waarna ons op ’n eenvoudige
wyse die algemene idees van "Volumeberekening op Wiener ruimtes", ook bekend
as die Lyons-Victoir benaderings skema, as ’n uitbreiding van die klassieke
volumeberekening metode gebruik. Die doel van hierdie skema is om volumeberekening
formules op te stel vir benaderings integrale wat gedefinieer is op
Wiener ruimtes en gevolglik, hoërorde numeriese skemas te ontwikkel. Dit is
gebaseer op die stogastiese Stratonovich ontwikkeling en kan beskou word as
’n ontwikkeling van die Kusuoka skema. Deur Kusuoka en Lyon-Victoir se
idees oor benaderings skemas toe te pas, het Ninomiya-Victoir en Ninomiya-
Ninomiya nuwe numeriese skemas van orde 2 ontwikkel, waar hulle die probleem
omgeskakel het van een waar SDVs opgelos moet word, na een waar
gewone differensiaalvergelykings (GDV) opgelos moet word. Hierdie twee skemas
word in Hoofstuk 5 uiteengeset. Alhoewel die benaderings soortgelyk is, is
daar ’n beduidende verskil in die algoritmes self. Hierdie hoofstuk begin met ’n
algemene uiteensetting van die Ninomiya-Victoir algoritme waar ’n arbitrêre
vaste tyd horison, T, gebruik word. Dié word toegepas op opsieprysvastelling
en optimale portefeulje strategie probleme. Verder word numeriese simulasies
uitgevoer, die prestasie van die Ninomiya-Victoir algoritme was bestudeer en
vergelyk met die Euler-Maruyama metode. Ons maak die opmerking dat die
Ninomiya-Victoir algoritme aansienlik vinniger is. Die belangrikste resultaat
van die Ninomiya-Ninomiya benaderings skema word ook voorgestel. Deur die
idee van ’n Lie algebra te gebruik, het Ninomiya en Ninomiya ’n stogastiese
veranderlike met GDV-waardes gekonstrueer wat se gemiddeld die oplossing
van ’n gegewe SDV benader. Die Runge-Kutta metode vir GDVs word dan
toegepas op die GDV wat getrek is uit die stogastiese veranderlike en ’n lineêre
operator gekonstrueer. ’n Veralgemeende uitdrukking vir die gekonstrueerde
operator is afgelei en die algoritme is toegepas op die prysvasstelling van ’n
Asiatiese opsie onder die Heston onbestendigheids model.
|
Page generated in 0.059 seconds