• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of the lepidic cubic phase: from controlled release and uptake to in meso crystallization of membrane proteins

Clogston, Jeffrey 13 July 2005 (has links)
No description available.
2

Electrochemical investigations on lipid cubic phases

Khani Meynaq, Mohammad Yaser January 2017 (has links)
Electrochemical Impedance Spectroscopy (EIS) was used to develop a novel methodology for studying ionic interaction with lipids arranged in a lipid cubic phase (LCP). Studying different types of ions, both cations and anions, validated the method. A free-standing LCP membrane was formed between two cell compartments and impedance experiments were carried out in a 2-electrode setup to estimate dielectric properties of the membrane, exposed to the following electrolyte solutions at different concentrations: KCl, CsBr, CaCl2, MgCl2, CsCl, NaCl, NaOAc and NaTryptophan. Two different LCP were used in this setup, i.e: Monoloein/water and the ternary system of monoolein/dioleoylphosphatidylcholine/water (MO/DOPC/H2O). SAXRD measurements were performed to determine the space group of the cubic phase and confirm the stability of the LCP during measurements. Membrane resistances and capacitances were found from equivalent circuit fitting to the impedance data. The membrane resistance was shown to be related to ionic interaction with the lipid head group in the water channels of the LCP. Membrane capacitance were correlating to condensing and swelling effect of LCP due to the exposure of ions. The results correlated well with the SAXRD results and earlier published data. The results also indicate that these membranes become less permeable to ions as they increase in size as well as in charge or polarity.  Cyclic voltammetry was used to study the applications of a LCP for modification of the bioanode in a biofuel cell. The monoolein cubic phase was used to host Glucose oxidase (GOx) and a freely diffusing ferrocene carboxylate was used as mediator. The supported cubic phase had an intrinsic resistance in the same order of magnitude as the freestanding MO-LCP membrane as measured with EIS. / Elektrokemisk impedans spektroskopi har använts för att utveckla en ny metod för att studera joners växelverkan med lipider som bildat en kubisk fas. Olika typer av joner, både positiva och negativa, användes för att validera metoden. Ett fristående membran uppbyggt av en kubisk fas separerade två avdelningar i en elektrokemisk cell. Cellen fylldes med elektrolyt-lösningar och impedansmätningar kunde utföras mellan två platina elektroder placerade i vardera avdelning. Membranet exponerades för följande elektrolytlösningar av olika koncentration: KCl, CsBr, CaCl2, MgCl2, CsCl, NaCl, NaOAc and NaTryptofan. Två olika kubiska faser användes i denna uppställning, dvs: Monoloein/vatten och det ternära systemet monoolein/dioleoylfosfatidylkolin/vatten(MO/DOPC/H2O). Med hjälp av SAXRD kunde den kubiska fasens kristallstruktur bestämmas och dess stabilitet under mätningarna bekräftas. De dielektriska egenskaperna hos membranet bestämdes genom att anpassa impedansspektrat till en ekvivalent krets bestående av resistanser, kapacitanser och konstant-faselement. Membranresistansen visade sig vara relaterad till jonernas växelverkan med lipidhuvudgruppen i vattenkanalerna i kubiska fasen. Ju starkare växelverkan desto högre var resistansen. Membrankapacitansen kunde korreleras med kondenserande och uppsvällande effekter på kubiska fasen förorsakade av exponeringen till joner. Resultaten bekräftades av SAXRD mätningar och även tidigare publicerade data. Resultaten indikerar också tydligt att permeabiliteten hos membranet minskar med ökad jonstorlek, jonladdningoch polaritet hos jonen. Cyklisk voltammetri användes för att studera en tillämpning av kubiska fasen i en tänkt applikation som bioanod i en biobränslecell. Elektroden modifierades med en kubisk fas innehållande GOx och tillsammans med en fritt diffunderande ferrocen karboxylat som mediator, där oxidation av glukos studeras. Det visade sig att den kubiska fasen hade en resistans av samma storleksordning som det fristående membranet uppmätt med impedansspektroskopi.
3

Electrochemical Studies of Redox Properties and Diffusion in Self-Assembled Systems

Kostela, Johan January 2004 (has links)
<p>In this thesis electron transfer reactions and diffusion of redox molecules in three different types of self-aggregated structures are investigated. Electrochemistry was used to investigate the redox potential and diffusion coefficients for redox active molecules with different polarity. The first aggregate system studied was the micellar phase. The role of electrostatic interactions in the stability of an amphiphilic viologen was investigated for differently charged micelles. It was concluded that the electrostatic environment changed the redox potential of the viologen. In differently charged micelles the redox potential was more negative compared to when the viologen was situated in micelles with the same charge.</p><p>The second structure investigated is a very fascinating phase, the bicontinuous cubic phase, with its continuous channels of water and an apolar bilayer. Its domains with different polarity made it possible to solvate both hydrophilic and hydrophobic molecules. An amphiphilic molecule will have its head-group at the interface between the apolar and polar part, and can move lateral within the bilayer. All molecules investigated made contact with and reacted at the surface of the electrode. The diffusion of water bound species diffusing in the water channels was 3-4 times slower than in water. Hydrophobic and amphiphilic molecules were much more hindered, probably because the cubic phase was not defect free.</p><p>The third kind of structure studied was a lamellar system. This phase is built up from planar bilayers that are stacked with a repeating distance and with water in between. A hydrophilic molecule was severely hindered to move in the direction perpendicular to the bilayer plane. Upon addition of the peptide melittin the current increased, due to pore formation in the bilayer.</p>
4

Electrochemical Studies of Redox Properties and Diffusion in Self-Assembled Systems

Kostela, Johan January 2004 (has links)
In this thesis electron transfer reactions and diffusion of redox molecules in three different types of self-aggregated structures are investigated. Electrochemistry was used to investigate the redox potential and diffusion coefficients for redox active molecules with different polarity. The first aggregate system studied was the micellar phase. The role of electrostatic interactions in the stability of an amphiphilic viologen was investigated for differently charged micelles. It was concluded that the electrostatic environment changed the redox potential of the viologen. In differently charged micelles the redox potential was more negative compared to when the viologen was situated in micelles with the same charge. The second structure investigated is a very fascinating phase, the bicontinuous cubic phase, with its continuous channels of water and an apolar bilayer. Its domains with different polarity made it possible to solvate both hydrophilic and hydrophobic molecules. An amphiphilic molecule will have its head-group at the interface between the apolar and polar part, and can move lateral within the bilayer. All molecules investigated made contact with and reacted at the surface of the electrode. The diffusion of water bound species diffusing in the water channels was 3-4 times slower than in water. Hydrophobic and amphiphilic molecules were much more hindered, probably because the cubic phase was not defect free. The third kind of structure studied was a lamellar system. This phase is built up from planar bilayers that are stacked with a repeating distance and with water in between. A hydrophilic molecule was severely hindered to move in the direction perpendicular to the bilayer plane. Upon addition of the peptide melittin the current increased, due to pore formation in the bilayer.
5

Simulation of Relaxation Processes in Fluorescence, EPR and NMR Spectroscopy / Simulering av Relaxationsprocesser inom Fluoresens, EPR och NMR Spektroskopi

Håkansson, Pär January 2004 (has links)
Relaxation models are developed using numerical solutions of the Stochastic Liouville Equation of motion. Simplified descriptions such as the stochastic master equation is described in the context of fluorescence depolarisation experiments. Redfield theory is used in order to describe NMR relaxation in bicontinuous phases. The stochastic fluctuations in the relaxation models are accounted for using Brownian Dynamics simulation technique. A novel approach to quantitatively analyse fluorescence depolarisation experiments and to determine intramolecular distances is presented. A new Brownian Dynamics simulation technique is developed in order to characterize translational diffusion along the water lipid interface of bicontinuous cubic phases.
6

Injection Methods and Instrumentation for Serial X-ray Free Electron Laser Experiments

January 2015 (has links)
abstract: Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques. The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a “diffract and destroy” methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection. Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly. This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation. / Dissertation/Thesis / Doctoral Dissertation Physics 2015
7

Vibrational And Mechanical Properties Of 10 Mol % Sc2o3-1 Mol % Ceo2- Zro2 Electrolyte Ceramics For Solid Oxide Fuel Cells

Lukich, Svetlana 01 January 2009 (has links)
Solid Oxide Fuel Cells (SOFCs) are emerging as a potential breakthrough energy conversion technology for clean and efficient production of electricity and heat from hydrogen and hydrocarbon fuels. Sc0.1Ce0.01ZrO2 electrolytes for Solid Oxide Fuel Cells are very promising materials because their high ionic conductivity in the intermediate temperature range 700°C-800°C. The vibration response of cubic and rhombohedral (β) 10 mol%Sc2O3 - 1 mol%CeO2 - ZrO2(Sc0.1Ce0.01ZrO2 ) both at room and high-temperatures is reported. The in-situ heating experiments and ex-situ indentation experiments were performed to characterize the vibrational behavior of these important materials. A temperature and stress-assisted phase transition from cubic to rhombohedral phase was detected during in-situ Raman spectroscopy experiments. While heating and indentation experiments performed separately did not cause the transition of the cubic phase into the rhombohedral structure under the performed experimental conditions and only broadened or strained peaks of the cubic phase could be detected, the heating of the indented (strained) surface leaded to the formation of the rhombohedral Sc0.1Ce0.01ZrO2. Both temperature range and strained zone were estimated by in situ heating and 2D mapping, where a formation of rhombohedral or retention of cubic phase has been promoted. The mechanical properties, such as Young’s modulus, Vickers hardness, indentation fracture resistance, room and high temperature four point bending strength and SEVNB fracture toughness along with the stress – strain deformation behavior in compression, of 10 mol% Sc2O3 – 1 mol % CeO2 - ZrO2 (ScCeZrO2) ceramics have been studied. The chosen composition of the ScCeZrO2 has very high ionic conductivity and, therefore, is very promising oxygen ion conducting electrolyte for the intermediate temperature Solid Oxide Fuel Cells. Therefore, its mechanical behavior is of importance and is presented in this study.
8

Estimating the parameters of polynomial phase signals

Farquharson, Maree Louise January 2006 (has links)
Nonstationary signals are common in many environments such as radar, sonar, bioengineering and power systems. The nonstationary nature of the signals found in these environments means that classicalspectralanalysis techniques are notappropriate for estimating the parameters of these signals. Therefore it is important to develop techniques that can accommodate nonstationary signals. This thesis seeks to achieve this by firstly, modelling each component of the signal as having a polynomial phase and by secondly, developing techniques for estimating the parameters of these components. Several approaches can be used for estimating the parameters of polynomial phase signals, eachwithvarying degrees ofsuccess.Criteria to consider in potential estimation algorithms are (i) the signal-to-noise (SNR) ratio threshold of the algorithm, (ii) the amount of computation required for running the algorithm, and (iii) the closeness of the resulting estimates' mean-square errors to the minimum theoretical bound. These criteria will be used to compare the new techniques developed in this thesis with existing techniques. The literature on polynomial phase signal estimation highlights the recurring trade-off between the accuracy of the estimates and the amount of computation required. For example, the Maximum Likelihood (ML) method provides near-optimal estimates above threshold, but also incurs a heavy computational cost for higher order phase signals. On the other hand, multi-linear techniques such as the high-order ambiguity function (HAF) method require little computation, but have a significantly higher SNR threshold than the ML method. Of the existing techniques, the cubic phase (CP) function method is a promising technique because it provides an attractive SNR threshold and computational complexity trade-off. For this reason, the analysis techniques developed in this thesis will be derived from the CP function. A limitation of the CP function is its inability to accurately process phase orders greater than three. Therefore, the first novel contribution to this thesis develops a broadened class of discrete-time higher order phase (HP)functions to address this limitation.This broadened class is achieved by providing a multi-linear extension of the CP function. Monte Carlo simulations are performed to demonstrate the statistical advantage of the HP functions compared to the HAFs. A first order statistical analysis of the HP functions is presented. This analysis verifies the simulation results. The next novel contribution is a technique called the lower SNR cubic phase function (LCPF)method. It is an extension of the CP function, with the extension enabling performance at lower signal-to-noise ratios (SNRs). The improvement of the SNR threshold's performance is achieved by coherently integrating the CP function over a compact interval in the two-dimensional CP function space. The computation of the new algorithm is quite moderate, especially when compared to the ML method. Above threshold, the LCPF method's parameter estimates are asymptotically efficient. Monte Carlo simulation results are presented and a threshold analysis of the algorithm closely predicts the thresholds observed in these results. The next original contribution to this research involves extending the LCPF method so that it is able to process multicomponent cubic phase signals and higher order phase signals. The LCPF method is extended to higher orders by applying a windowing technique as opposed to adjusting the order of the kernel as implemented in the HP function method. To demonstrate the extension of the LCPF method for processing higher order phase signals and multicomponent cubic phase signals, some Monte Carlo simulations are presented. Finally, these estimation techniques are applied to real-worldscenarios in the fields of Power Systems Analysis, Neuroethology and Speech Analysis.
9

Characterisation of Aqueous Solutions, Liquid Crystals and Solid State of Non-ionic Polymers in Association with Amphiphiles and Drugs

Ridell, Annika January 2003 (has links)
<p>Cellulose ethers and polyethylene glycols are used in drug formulations as water swelling or water soluble matrices. Polar lipids, for example monoglycerides, and surfactants can be used to solubilise hydrophobic or amphiphilic drugs and to formulate potential drug delivery vehicles such as emulsions, liposomes and cubic phases. In this thesis mixtures of these excipients are characterised in various environments, from dilute aqueous solutions to solid dispersions. Special focus has been on the understanding of the associating processes involved.</p><p>Detailed understanding of the association of cellulose ethers, of varying hydrophobicity, and amphiphilic substances is presented. The hydrophobicity of the polymer was found to have an impact on the interaction scheme. The amphiphiles were found to bind at lower amphiphile concentrations to a more hydrophobic polymer thus influencing both micro- and macroscopic structure of the aggregates. </p><p>The choice of counterion to the amphiphile has a small but significant effect on the interaction and the structure of the aggregates. Also amphiphilic drug molecules can interact with nonionic polymers in a similar way as surfactants in aqueous solution. Due to the higher cmc of the drug ibuprofen the interaction is largely influenced by the ionic strength of the solution. The type of amphiphile also influences the cooperativity of the amphiphile-polymer binding.</p><p>In more concentrated systems liquid crystals are formed into which the polymer interact with the amphiphiles. Both cubic and sponge phases were found with relatively large polymers interacting with polar lipids. These phases were found to swell and shrink mainly controlled by the amount of polymer inside them. Also membrane interacting substances added to the sponge phase could influence the size of the water channels in the phase. </p><p>In water free systems polymers and polar lipids were found to interact as well as forming solid dispersions. The behaviour of the phase separation between polymer and lipid depended on the concentration of the dispersed phase. The polar lipid was found to be distributed in the lamellar part of the semicrystalline polymer influencing the polymer folding.</p>
10

Characterisation of Aqueous Solutions, Liquid Crystals and Solid State of Non-ionic Polymers in Association with Amphiphiles and Drugs

Ridell, Annika January 2003 (has links)
Cellulose ethers and polyethylene glycols are used in drug formulations as water swelling or water soluble matrices. Polar lipids, for example monoglycerides, and surfactants can be used to solubilise hydrophobic or amphiphilic drugs and to formulate potential drug delivery vehicles such as emulsions, liposomes and cubic phases. In this thesis mixtures of these excipients are characterised in various environments, from dilute aqueous solutions to solid dispersions. Special focus has been on the understanding of the associating processes involved. Detailed understanding of the association of cellulose ethers, of varying hydrophobicity, and amphiphilic substances is presented. The hydrophobicity of the polymer was found to have an impact on the interaction scheme. The amphiphiles were found to bind at lower amphiphile concentrations to a more hydrophobic polymer thus influencing both micro- and macroscopic structure of the aggregates. The choice of counterion to the amphiphile has a small but significant effect on the interaction and the structure of the aggregates. Also amphiphilic drug molecules can interact with nonionic polymers in a similar way as surfactants in aqueous solution. Due to the higher cmc of the drug ibuprofen the interaction is largely influenced by the ionic strength of the solution. The type of amphiphile also influences the cooperativity of the amphiphile-polymer binding. In more concentrated systems liquid crystals are formed into which the polymer interact with the amphiphiles. Both cubic and sponge phases were found with relatively large polymers interacting with polar lipids. These phases were found to swell and shrink mainly controlled by the amount of polymer inside them. Also membrane interacting substances added to the sponge phase could influence the size of the water channels in the phase. In water free systems polymers and polar lipids were found to interact as well as forming solid dispersions. The behaviour of the phase separation between polymer and lipid depended on the concentration of the dispersed phase. The polar lipid was found to be distributed in the lamellar part of the semicrystalline polymer influencing the polymer folding.

Page generated in 0.0409 seconds