• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chromosome and Genome Evolution in Culicinae Mosquitoes

Masri, Reem Abed 14 July 2021 (has links)
The Culicinae is the most extensive subfamily among the Culicidae family of mosquitoes. Two genera, Culex and Aedes, from this subfamily have world-wide distribution and are responsible for transmitting of several deadly diseases including Zika, West Nile fevers, chikungunya, dengue, and Rift Valley fevers. Developing high-quality genome assembly for mosquitoes, studying their population structure, and evolution can help to facilitate the development of new strategies for vector control. Studies on Aedes albopitcus as well as on species from the Culex pipiens complex, which are widely spread in the United States, provide excellent models on these topics. Ae. albopictus is one of the most dangerous invasive mosquito species in the world that transmits more than 20 arboviruses. This species has highly repetitive genome that is the largest among mosquito genomes sequenced so far. Thus, sequencing and assembling of such genome is extremally challenging. As a result, the lack of high-quality Ae. albopictus genome assembly has delayed the progress in understanding its biology. To produce a high-quality genome assembly, it was important to anchor genomic scaffolds to the cytogenetic map creating a physical map of the genome assembly. We first developed a new gene-based approach for the physical mapping of repeat-rich mosquito genomes. The approach utilized PCR amplification of the DNA probes based on complementary DNA (cDNA) that does not include repetitive DNA sequences. This method was then used for the development of a physical map for Ae. albopictus based on the in situ hybridization of fifty cDNA fragments or gene exons from twenty-four scaffolds to the mitotic chromosomes from imaginal discs. This study resulted in the construction of a first physical map of the Ae. albopictus genome as well as mapping viral integration and polyphenol oxidase genes. Moreover, comparing our present Ae. albopictus physical map to the current Ae. aegypti assembly indicated the presence of multiple chromosomal inversions between them. To better understand population structure and chromosome evolution in Culicinae mosquitoes, especially in the Culex pipiens complex, we studied genomic and chromosomal differentiation between two subspecies Cx. pipiens pipiens and Cx. pipiens molestus. For the species responsible for the spread of human diseases, understanding the population dynamics and processes of taxa diversification is important for an effective mosquito control . Two vectors of West Nile virus, Cx. p. pipiens and Cx. p. molestus, exhibit epidemiologically important behavioral and physiological differences, but the whole-genome divergence between them was unexplored. The first goal of this study was to better understand the level of genomic differentiation and population structures of Cx. p. pipiens and Cx. p. molestus from different continents. We sequenced and compared whole genomes of 40 individual mosquitoes from two locations in Eurasia and two in North America. Principal Component, ADMIXTURE, and neighbor joining analyses of the nuclear genomes identified two major intercontinental, monophyletic clusters of Cx. p. pipiens and Cx. p. molestus. The level of genomic differentiation between the subspecies was uniform along chromosomes. The ADMIXTURE analysis determined signatures of admixture in Cx. p. pipens populations, but not in Cx. p. molestus populations. Thus, our study identified that Cx. p. molestus and Cx. p. pipiens represent different evolutionary units with monophyletic origin that have undergone incipient ecological speciation. The second goal was to study differences at the chromosome level between these two organisms. We first measured whole chromosome and chromosome arm length differences between Cx. p. molestus and Cx. p. pipiens as a basic cytogenetic approach. In addition, we used the novel Hi-C approach to detect chromosomal rearrangements between them since Hi-C was successful in detecting a known inversion in Cx. quinquefasciatus. Cx. p. molestus and Cx. p. pipiens embryos were used to perform the Hi-C technique. Analysis of the Hi-C data showed the presence of two different inversions in Cx. p. pipiens and Cx. p. molestus heatmap, which could explain their different physiology and adaptation in nature. Developing modern genomic and cytogenetic tools is important to enhance the quality of genome assemblies, improve gene annotation, and provide a better framework for comparative and population genomics of mosquitoes; also it is the foundation for the development of novel genome-based approaches for vector control. / Doctor of Philosophy / Mosquitoes are medically important insects because they vector a range of diseases that infect humans. The subfamily Culicinae is responsible for transmitting such diseases as Zika, dengue, and West Nile fevers, which have triggered fatal infections and epidemics in multiple parts of the world. Since 2010-2016, studies have reported exceeding levels of insecticide resistance that slows the disease elimination process. Novel transgenic techniques have a tremendous potential for more efficiently minimizing mosquito-borne diseases and transmission. Availability of high-quality genome assemblies for mosquitoes may help to better understand their population structure and to develop effective and safe vector-control approaches that we urgently need. For the development of high-quality genome assemblies, we need to construct a physical genome map, that shows the physical locations of genes or other DNA sequences of interest along the chromosomes. For this reason, we developed a new gene-based approach for the physical mapping of the mosquito genomes. This method was then used for the development of a physical map for Ae. albopictus. This study resulted in the generation of the first physical map of the Ae. albopictus genome. To understand population structure in Culicinae mosquitoes, we used mosquitoes from the Culex pipiens complex. Species in this complex transmit different arthropod-borne viruses or arboviruses. Notable is the West Nile Virus, which has triggered fatal infections and epidemics in Eastern and Central Europe, North America and is also known in Asia, Australia, Africa, and the Caribbean. We specifically focused on two subspecies in this complex, Cx. pipiens pipiens and Cx. pipiens molestus that are morphologically identical, but are different physiologically and behaviorally. Although they are spread globally in temperate regions, their population structure and taxonomic status remains unclear. The first goal of this study was to better understand the level of genomic differentiation of Cx. p. pipiens and Cx. p. molestus from different continents. We sequenced and compared the whole genomes of 40 individual mosquitoes from two locations in Eurasia and two in North America. Our study identified that Cx. p. molestus and Cx. p. pipiens represent different evolutionary units that are currently undergoing ecological speciation. The second goal was to study differences at the chromosome level between them. Using the Hi-C approach we detected presence of two different inversions in Cx. p. pipiens and Cx. p. molestus, which could potentially explain their different physiology and adaptation.
2

Optimization of Cytogenetic and Physical mapping of Culicinae genomes

Yang, Fan 02 March 2011 (has links)
Understanding chromosome structure and genome organization of Culicine mosquitoes can potentially contribute to the development of novel approaches to vector control. However, because of highly repetitive nature of the Aedes and Culex genomes, the structure of their polytene chromosomes is damaged by ectopic contacts that make the analysis difficult. Mitotic chromosomes from imaginal discs of 4th instar larvae of Aedes aegypti were tested as a source for the physical genome mapping for this mosquito. Chromosomes in imaginal discs are 10 times more abundant than chromosomes in nervous ganglia, and they do not accumulate chromosomal mutation as cell line chromosomes do. Prometaphase chromosomes in imaginal discs of Ae. aegypti are 4-5 times longer than metaphase chromosomes and can provide higher resolution for physical mapping. Cold temperature (+16°C) was proven to increase the number of the chromosomes. Hypotonic solution treatment of live larvae was proven to elongate chromosomes and improve banding patterns. We differentially stained these mitotic chromosomes with Giemsa and YOYO-1 to revile the banding pattern. We applied fluorescent in situ hybridization (FISH) procedure developed for human chromosomes to Ae. aegypti chromosomes. A strain from Culex pipiens, Cx. quinquefasciatus and their hybrids from the natural population in Virginia was successfully colonized in the laboratory. This strain can be used as a reliable source for cytogenetic studies. / Master of Science in Life Sciences
3

Vector Competence of Aedes sierrensis and Culex pipiens complex (Diptera: Culicidae) for Dirofilaria immitis (Spirurida: Onchocercidae) in Northern California

Kurosaka, Jeffrey Allan 01 January 2017 (has links) (PDF)
Dirofilaria immitis Leidy (dog heartworm) is a life-threatening parasite transmitted by mosquitoes to domestic dogs. Endemic in the eastern United States, cases have become more prevalent over the last few decades. While prevalence in California is generally low, Lake and San Joaquin Counties have reported rates comparable to the East Coast at 3.73% and 0.71%(CAPC 2017), respectively. Aedes sierrensis is thought to be responsible for transmission in California, but in some cases, it exists in inadequate quantities and temporal ranges to explain parasite activity. Based on Huang et al. (2013) and Tran (2016), bloodfeeding patterns, and other vector criteria, Culex pipiens complex and Culiseta incidens were chosen to evaluate for vector competence. Female field-caught mosquitoes were reared, infected (2.5-5 mff/μl), and decapitated at 15, 18, or 21 days post infection (dpi). Cs. incidens was reluctant to feed using an artificial feeding system and will require additional trials. On the contrary, trials on Ae. sierrensis and Cx. pipiens complex were both completed successfully. Both species were determined to be competent vectors of D. immitis. Based on our findings, more than half of Ae. sierrensis females produced emerging L3s by 21 dpi, while Cx. pipiens complex never produced L3s in more than 5% of females. In conjunction with other factors such as the detection of D. immitis in wild mosquitoes, host-seeking preferences for domestic dogs, and appropriate temporal overlap, this suggests that both Ae. sierrensis and Cx. pipiens complex may play central roles in Lake or San Joaquin Counties, CA when abundant. Targeted control efforts are necessary to reduce the incidence of canine heartworm in these areas. While Lake and San Joaquin Counties, CA were the focus of this study, our results may be applicable to the western United States when these species are relevant.

Page generated in 0.1667 seconds