• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding lək̓ʷəŋən soils: The foundation of environmental stewardship in coastal anthropogenic prairies

Lowther, Emma 20 July 2022 (has links)
Long-term human habitation introduces morphological and chemical changes to soil as a result of cultural, economic, and stewardship practices. These cultural soils, or Anthrosols, are recognized globally. On the Northwest Coast of North America, Indigenous marine and terrestrial land stewardship practices are recognized on present-day landscapes. Increased awareness of these stewardship practices is informed by Indigenous knowledge, ecological legacies, ethnographic studies, and archaeological evidence. This research was undertaken to better understand how lək̓ʷəŋən (Straits Salish) stewardship of a cultural landscape affected the development of soil across a village-garden gradient. On Vancouver Island, British Columbia, Indigenous cultivation of culturally important root foods was interrupted by colonization and its pervasive effects, so an additional research aim was to investigate how cultural soils remain after being disconnected from traditional stewardship. There is a growing global understanding that Indigenous management of ecosystems plays a key role in ecological health. At the regional scale, Songhees First Nation are interested in learning about their soils to inform future restoration efforts and connect youth with their land and culture. The lək̓ʷəŋən Ethnoecology and Archaeology Project (LEAP) is a collaborative research project with the Songhees First Nation to learn more about the physical remains of lək̓ʷəŋən stewardship: soils are a key part of the project. Community knowledge, ethnographic sources, and ecological legacies informed the archaeological excavation and soil sampling in this research. Archaeological excavation was utilized to understand the pedologic and archaeological setting of the site. Soil samples were analyzed for physical and chemical properties to see if a statistical difference between on and off-site samples could be detected. Data from the archaeological excavation were recorded and interpreted. A gradient of influence does exist across the village-garden; the village has a strong physical and chemical signature that can be seen through archaeological excavation, macroscopic remains in the soil, and elevated levels of phosphorous, calcium, and soil pH. Results from the garden are less clear, previous ecological studies and archaeological surveys show evidence of lək̓ʷəŋən stewardship—culturally important plant species and burial cairns are present. However, within the soil, the macroscopic remains and soil chemistry signatures are not as strong as the village which indicates that the health of lək̓ʷəŋən gardens facilitates their continued ecological functioning which ultimately may obscure earlier soil signatures of stewardship. Archaeological investigation alone does not always show the full scope of Indigenous terrestrial management practices. Incorporating present-day community knowledge, ecological legacies of plant cultivation, and utilizing soil chemical data are important to understanding the interconnections between people and their environments across cultural landscapes. Current work on the ecological legacies of plant cultivation can be assisted by investigating the soil as a site that also undergoes co-development with Indigenous stewardship. / Graduate
2

Irrigation and persistence in the dry zone of Sri Lanka : a geoarchaeological study

Gilliland, Krista January 2011 (has links)
This thesis presents an independent, sediment-based record of landscape change within an agricultural hinterland. Established historical and archaeological sequences document the primary occupation of Anuradhapura, Sri Lanka’s ancient capital, beginning ca. 400 BC and lasting until it was largely abandoned in AD 1017. Anuradhapura is located in the island’s dry zone, which depends almost completely on the unpredictable Northeastern Monsoon for water. Oral history and historical narratives have long held that large-scale irrigated rice cultivation took place in the hinterland to produce an agricultural surplus that sustained the urban and monastic populations. However, until the onset of the Anuradhapura Hinterland Project in 2005, the archaeological record of the hinterland was undocumented, leaving existing narratives untested. The geoarchaeological research presented here was undertaken as part of the Hinterland Project, in order to document the chronology and cultural and environmental processes that contributed to the formation of this irrigated landscape. Optical dating of sediments demonstrates that the onset of large-scale irrigation began ca. 400 BC, and the construction of new works continued until Anuradhapura’s late occupation period. Sampled reservoirs and channels began to infill, indicating widespread disuse, within ca. 100 years of Anuradhapura’s abandonment. Soil micromorphology and bulk sediment characterisation document hinterland habitation, water management, and cultivation activities prior to the establishment of large-scale irrigation. This work illustrates the coping strategies that people employed to deal with the vagaries of the dry zone environment and demonstrates that hinterland land use changed throughout the primary occupation period. Although largescale irrigation works infilled relatively rapidly, cultural activity and land use re-emerged following this period of disuse.
3

Deep anthropogenic topsoils in Scotland : a geoarchaeological and historical investigation into distribution, character and conservation under modern land cover

McKenzie, Joanne T. January 2006 (has links)
Deep anthropogenic topsoils – those augmented through long-term additions of mineral bulk among fertilising agents – retain in both their physical and chemical make-up significant indicators for cultural activity. This project researched the geographical distribution and historical context of deep anthropogenic topsoils in Scotland and the Isles, and used this information to investigate the impact of current land cover upon the cultural information they retain. In so doing, the project investigated the potential for conservation of this significant cultural resource. A review of the historical information available on agricultural and manuring practices for Scotland identified several factors likely to affect deep topsoil distribution and frequency. These were: the availability of bulk manures to Scottish farmers, the significance of the seaweed resource in determining fertiliser strategies in coastal areas, and the influence of urban settlement and associated patterns of domestic and industrial waste disposal on the location of deep topsoils. Evidence for widespread deep topsoil development was limited. The primary data source used – the First Statistical Account of Scotland – was manipulated into a spatial database in ArcView GIS, to which geographical data from the Soil Survey of Scotland and national archaeological survey databases were added. This was used to devise a survey programme aiming both to investigate the potential factors affecting soil development listed above, and to locate deep topsoil sites for analysis. Three sites were identified with deep topsoils under different cover types (woodland, arable and pasture). The urban-influenced context of two of these highlighted the significance of urban settlement to the location of Scottish deep topsoils. Analysis of pH, organic matter, and total phosphorus content showed a correlation between raised organic matter and a corresponding increase in phosphorus content in soils under permanent vegetation. By contrast, soils under arable cultivation showed no such rise. This was attributed to the action of cropping in removing modern organic inputs prior to down-profile cycling. The potential for pasture and woodland cover to affect relict soil signatures was therefore observed. Thin section analysis aimed to both provide micromorphological characterisation of the three deep topsoil sites and investigate the effect of modern land cover on micromorphological indicators. Distinctive differences in micromorphological character were observed between the rural and urban deep topsoils, with the latter showing a strong focus on carbonised fuel residues and industrial wastes. All sites showed a highly individual micromorphological character, reflective of localised fertilising systems. There was no correlation between land cover type and survival of material indictors for anthropogenic activity, with soil cultural indicators surviving well, particularly those characteristic of urban-influenced topsoils. Suggestions for preservation strategies for this potentially rare and highly localised cultural resource included the incorporation of deep anthropogenic topsoil conservation into current government policy relating to care of the rural historic environment, and the improvement of data on the resource through ongoing survey and excavation.

Page generated in 0.0565 seconds