• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Étude de la mise en oeuvre de composites thermostables cyanate-ester pour pièces structurales aéronautiques tièdes / Study of thermostable cyanate-ester composite for warm aircraft structural parts

Zemni, Lilia 14 March 2019 (has links)
Les pièces situées dans des zones chaudes/tièdes (300-400°C) de l'avion sont actuellement en titane (mât moteur) ou en composite à matrice époxy (plenum). Comment pourrait-on diminuer la masse de ces pièces tout en évitant leur dégradation à hautes températures de fonctionnement ? Le projet TACT (Technologie pour Aérostructures composites Tièdes), porté par Nimitech Innovation® (Groupe LAUAK), propose une solution innovante consistant à mettre en oeuvre par voie RTM des pièces structurales tièdes à base de renfort en fibres de carbone (FC) et de matrice Cyanate ester (CE). Le choix de la matrice thermodurcissable CE est justifié par son caractère thermostable, c'est-à-dire sa capacité d'opérer en continu à de hautes températures de fonctionnement (avec une température de transition vitreuse Tg>300°C). Par ailleurs, elle possède la facilité de mise en oeuvre des époxydes du fait qu'elle s'adapte généralement bien aux paramètres du procédé RTM. Toutefois, l'exothermie élevée de la matrice CE lors de la réticulation implique un gradient de température dans la pièce composite et peut ainsi engendrer des problèmes de surchauffe. Les travaux scientifiques menés dans le cadre de cette thèse se focalisent sur la problématique de surchauffe de la résine pendant le processus de polymérisation très exothermique dans le moule RTM. L'objectif serait ainsi de maîtriser le cycle de cuisson du composite afin d'éviter tout problème d'emballement ou de dégradation pendant la réticulation de la matrice. Dès lors, la thèse s'organise de la manière suivante : dans un premier temps, le comportement thermocinétique de la matrice CE (pure et catalysée) est analysé pendant l'étape de réticulation, et ceci dans l'optique de contribuer à l'optimisation de cycle de cuisson lors de la mise en oeuvre du composite FC/CE par procédé RTM. Ensuite, les propriétés thermiques (capacité calorifique, conductivité, diffusivité) en fonction du degré d'avancement de la résine CE sont menés afin d'évaluer le gradient thermique régi par l'équation de la chaleur permettant de maîtriser la cuisson de la résine dans l'épaisseur. Par ailleurs, la vitrification de la matrice CE est étudiée par le suivi de la température de transition vitreuse Tg en fonction de la température et du taux d'avancement à l'aide de différents techniques de mesure (DSC, DMA, TMA). Enfin, une modélisation de la vitrification à l'aide du modèle Di-Benedetto permettra l'estimation de la température de la transition vitreuse Tg ∞ pour le réseau tridimentionnel entièrement réticulé. / Aeronautical parts which operate in high temperature area (300-400°C) are currently made of titanium (aircraft pylon) or composite materials based on epoxy matrix (plenum). In which extent the weight of these pieces could be reduced as well as avoiding their degradation when operating at these working temperature ranges? TACT project (Technologie pour Aérostructures composites Tièdes), overseen by Nimitech Innovation® (Groupe LAUAK), suggests an innovative solution based on the development of high performance composites parts reinforced by carbon fibers (CF) and cyanate ester matrix (CE) through RTM process. The CE resin belongs to the class of high-performance thermosetting polymers and is mainly chosen in this project due to its thermal stability when operating at high temperatures (with a glass transition Tg>300°C), as well as epoxy-like processability. However, the cross-linking reaction exhibits highly exothermic process, resulting in non-linear increase in internal temperature, which may cause a temperature overshoot. The scientific work carried out within this thesis focuses on the problem of overheating of the resin during the highly exothermic polymerization process in the RTM mold. The objective would thus be to control the curing cycle of the composite in order to avoid problems of runaway or degradation during the crosslinking of the matrix. Hence, the thesis is organized as follows: firstly, thermokinetic behavior of CE resin is analyzed during the crosslinking process in order to optimize the curing cycle. Secondly, thermal properties (heat capacity, conductivity, diffusivity) are identified as a function of the conversion degree in order to evaluate the thermal gradient covered by the heat equation making it possible to control the curing along the thickness of the composite. Moreover, the vitrification of the cyanate ester matrix is studied by monitoring the glass transition temperature Tg as a function of the temperature and conversion degree using different methods (DSC, DMA, TMA). Finally, Di-Benedetto model, a vitrification model, is chosen in order to identify the glass transition temperature Tg∞ of a full crosslinked resin.
12

The Influence of Fibre Processing and Treatments on Hemp Fibre/Epoxy and Hemp Fibre/PLA Composites

Islam, Mohammad Saiful January 2008 (has links)
In recent years, due to growing environmental awareness, considerable attention has been given to the development and production of natural fibre reinforced polymer (both thermoset and thermoplastic) composites. The main objective of this study was to reinforce epoxy and polylactic acid (PLA) with hemp fibre to produce improved composites by optimising the fibre treatment methods, composite processing methods, and fibre/matrix interfacial bonding. An investigation was conducted to obtain a suitable fibre alkali treatment method to: (i) remove non-cellulosic fibre components such as lignin (sensitive to ultra violet (UV) radiation) and hemicelluloses (sensitive to moisture) to improve long term composites stability (ii) roughen fibre surface to obtain mechanical interlocking with matrices (iii)expose cellulose hydroxyl groups to obtain hydrogen and covalent bonding with matrices (iv) separate the fibres from their fibre bundles to make the fibre surface available for bonding with matrices (v) retain tensile strength by keeping fibre damage to a minimum level and (vi) increase crystalline cellulose by better packing of cellulose chains to enhance the thermal stability of the fibres. An empirical model was developed for fibre tensile strength (TS) obtained with different treatment conditions (different sodium hydroxide (NaOH) and sodium sulphite (Na2SO3) concentrations, treatment temperatures, and digestion times) by a partial factorial design. Upon analysis of the alkali fibre treatments by single fibre tensile testing (SFTT), scanning electron microscopy (SEM), zeta potential measurements, differential thermal analysis/thermogravimetric analysis (DTA/TGA), wide angle X-ray diffraction (WAXRD), lignin analysis and Fourier transform infrared (FTIR) spectroscopy, a treatment consisting of 5 wt% NaOH and 2 wt% Na2SO3 concentrations, with a treatment temperature of 120oC and a digestion time of 60 minutes, was found to give the best combination of the required properties. This alkali treatment produced fibres with an average TS and Young's modulus (YM) of 463 MPa and 33 GPa respectively. The fibres obtained with the optimised alkali treatment were further treated with acetic anhydride and phenyltrimethoxy silane. However, acetylated and silane treated fibres were not found to give overall performance improvement. Cure kinetics of the neat epoxy (NE) and 40 wt% untreated fibre/epoxy (UTFE) composites were studied and it was found that the addition of fibres into epoxy resin increased the reaction rate and decreased the curing time. An increase in the nucleophilic activity of the amine groups in the presence of fibres is believed to have increased the reaction rate of the fibre/epoxy resin system and hence reduced the activation energies compared to NE. The highest interfacial shear strength (IFSS) value for alkali treated fibre/epoxy (ATFE) samples was 5.2 MPa which was larger than the highest value of 2.7 MPa for UTFE samples supporting that there was a stronger interface between alkali treated fibre and epoxy resin. The best fibre/epoxy bonding was found for an epoxy to curing agent ratio of 1:1 (E1C1) followed by epoxy to curing agent ratios of 1:1.2 (E1C1.2), 1: 0.8 (E1C0.8), and finally for 1:0.6 (E1C0.6). Long and short fibre reinforced epoxy composites were produced with various processing conditions using vacuum bag and compression moulding. A 65 wt% untreated long fibre/epoxy (UTLFE) composite produced by compression moulding at 70oC with a TS of 165 MPa, YM of 17 GPa, flexural strength of 180 MPa, flexural modulus of 10.1 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa.m1/2 was found to be the best in contrast to the trend of increased IFSS for ATFE samples. This is considered to be due to stress concentration as a result of increased fibre/fibre contact with the increased fibre content in the ATFE composites compared to the UTFE composites. Hygrothermal ageing of 65 wt% untreated and alkali treated long and short fibre/epoxy composites (produced by curing at 70oC) showed that long fibre/epoxy composites were more resistant than short fibre/epoxy composites and ATFE composites were more resistant than UTFE composites towards hygrothermal ageing environments as revealed from diffusion coefficients and tensile, flexural, impact, fracture toughness, SEM, TGA, and WAXRD test results. Accelerated ageing of 65 wt% UTLFE and alkali treated long fibre/epoxy (ATLFE) composites (produced by curing at 70oC) showed that ATLFE composites were more resistant than UTLFE composites towards hygrothermal ageing environments as revealed from tensile, flexural, impact, KIc, SEM, TGA, WAXRD, FTIR test results. IFSS obtained with untreated fibre/PLA (UFPLA) and alkali treated fibre/PLA (ATPLA) samples showed that ATPLA samples had greater IFSS than that of UFPLA samples. The increase in the formation of hydrogen bonding and mechanical interlocking of the alkali treated fibres with PLA could be responsible for the increased IFSS for ATPLA system compared to UFPLA system. Long and short fibre reinforced PLA composites were also produced with various processing conditions using compression moulding. A 32 wt% alkali treated long fibre PLA composite produced by film stacking with a TS of 83 MPa, YM of 11 GPa, flexural strength of 143 MPa, flexural modulus of 6.5 GPa, IE of 9 kJ/m2, and KIc of 3 MPa.m1/2 was found to be the best. This could be due to the better bonding of the alkali treated fibres with PLA. The mechanical properties of this composite have been found to be the best compared to the available literature. Hygrothermal and accelerated ageing of 32 wt% untreated and alkali treated long fibre/PLA composites ATPLA composites were more resistant than UFPLA composites towards hygrothermal and accelerated ageing environments as revealed from diffusion coefficients and tensile, flexural, impact, KIc, SEM, differential scanning calorimetry (DSC), WAXRD, and FTIR results. Increased potential hydrogen bond formation and mechanical interlocking of the alkali treated fibres with PLA could be responsible for the increased resistance of the ATPLA composites. Based on the present study, it can be said that the performance of natural fibre composites largely depend on fibre properties (e.g. length and orientation), matrix properties (e.g. cure kinetics and crystallinity), fibre treatment and processing methods, and composite processing methods.

Page generated in 0.0314 seconds