• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 555
  • 126
  • 84
  • 46
  • 19
  • 17
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 10
  • 5
  • 4
  • Tagged with
  • 1063
  • 334
  • 192
  • 105
  • 105
  • 104
  • 102
  • 82
  • 75
  • 72
  • 71
  • 53
  • 52
  • 52
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Study of the flow of and deposition from turbidity currents

Lakshminarasimhan, Srivatsan 28 August 2008 (has links)
Not available / text
292

Molecular-beam epitaxial growth of low-dark-current avalanche photodiodes

Hurst, Jeffrey Byron, 1977- 29 August 2008 (has links)
The quaternary material system In[subscript x]Ga[subscript 1-x]As[subscript y]P[subscript 1-y] is an important material system for optoelectronic devices, specifically covering optimum fiber optic wavelengths. Among the limitations of using this material system concerning photodetector performance is generation of carriers due to material defects and impurities. This dissertation reports on the growth optimization of InGaAs using molecular-beam epitaxy for low-dark-current avalanche photodiodes through the study of the effects of the growth conditions on dark current. An optimum growth temperature of 545°C and arsenic beam equivalent pressure of 2x10⁻⁵ Torr was found for producing the lowest dark current density. Avalanche photodiodes were implemented with a dark current density 80 mA/cm² at 90% of the breakdown voltage.
293

Development of a resonant repeater tag for the enhancement of sensitivity and specificity in a wireless eddy current sensing scheme

Woo, Byungki, 1969- 29 August 2008 (has links)
Eddy current sensing has been successfully used in various applications from testing heat exchange tubes for nuclear power plants to assessing dielectric thickness on printed circuit boards. However, in civil infrastructures cosmetic or cementitious surface material often keeps the probe or reader coil from accessing conductive medium inside the structure, resulting in reduced coupling as the distance increases between the DUT (device under test) and probe. Thus, the direct application of existing eddy current sensing technique is not very useful to detect flaws in civil infrastructures. To address this weak coupling problem, a simple scheme is proposed in which a resonant passive repeater tag is placed between the reader coil and the conducting test target. The feasibility of detecting defects like cracks or fractures in conductive medium using a passive resonant tag and measuring the impedance as a method of interrogation is shown. The electromagnetic waves are transmitted into and detected from a resonant tag and the conductive medium underneath the tag without direct physical contact using a reader coil above the resonant repeater tag. Experimental data taken from simple setups to demonstrate the advantage of the proposed scheme are presented. In addition, the theoretical background, such as the self and mutual inductance, and image theory, are discussed extensively. It is also shown that the theories can be applicable to build the equivalent circuit with the proper calibration process. The analyses have been carried out to characterize the responses resulting from the various experiments. Furthermore, new measurands, the effective normalized inductance and resistance, were devised and employed to reanalyze the same experimental data. An effort to construct equivalent circuit model of the system has been made to correctly predict the response without the actual experiment. To improve the process of building the equivalent circuit, the total 4 types of tags and 6 types of DUT are built and tested. The analysis is also given for the constructed equivalent circuit model.
294

Streaming potential measurements in sulfide rich tailings

El Husseini, Bassam. January 2008 (has links)
In general, tailings dams are expected to seep. Anomalous seepage, especially when induced by internal erosion, is a major concern for owners and operators. The long established techniques for monitoring water seepage provide sparse information which may not be sufficient to detect and map the seepage path. Hence, there exists a great need for non-invasive techniques that would be sensitive to changing seepage conditions. The non-invasive nature of the techniques is particularly important because drilling and other penetrating (invasive) investigation methods are normally avoided. / Non-invasive techniques such as self-potential and high-resolution resistivity have been significantly improved in the past decade and have been successfully used for water retention dam investigation and monitoring. The main difficulty in the use of these techniques in monitoring sulfide rich tailings dams is the presence of electrochemical potentials that renders the interpretation of the acquired self-potential data difficult. / Numerical modelling is one of the latest methods in interpreting self-potential anomalies induced by liquid flow. But, in order to model streaming potentials several parameters need to be measured or estimated; (1) the hydraulic driving force and the hydraulic conductivity are required to solve for the hydraulic pressure distribution; (2) the cross-coupling conductivity distribution is needed to calculate the conduction current source parameter; and (3) the resistivity distribution is needed to determine the resulting potential distribution. / The zeta-potential and the resistivity of three pyrite rich tailings from the Abitibi region in Quebec were measured over the pH range 2 to 5 in different KCl aqueous solutions for the purpose of estimating the magnitude of electrokinetic effect induced by mine water seepage and the electrical resistivity variation induced by particle migration. The experimental and theoretical results obtained in the present study are pertinent to the interpretation of self-potential data. The zeta-potential was found to vary from -27 to -2 mV and the resistivity of the tailings was found to increase when fine particles are eroded.
295

Conversion of electrical system from direct current to alternating current

Barr, Tandy Lee 05 1900 (has links)
No description available.
296

Finite element analysis of telluric and magnetetelluric response over resitivity anomlies and topographic effects

Kisak, Eugene. January 1976 (has links)
No description available.
297

An investigation of the influence of silver doping on the intergranular 'weak-link' properties of the superconducting system Y1Ba2Cu307-x.

Jarvis, Alan Lawrence Leigh. January 2006 (has links)
High-temperature superconducting materials have found considerable technological application and still have a largely unrealised potential. The key to unlocking this potential depends on a better understanding of their properties; in particular, the maximum 'critical current density' which these materials, in the form of wires, tapes, thin-films and bulk monolithic forms, are able to support for high-current applications. The 'critical current density' in a polycrystalline high-temperature oxide superconductor system is determined by a percolation process of the super current through a three dimensional grain-boundary network. Grain-boundaries in these systems behave as Josephson junction 'weak-links' and they severely limit the critical current density in the presence of even moderate self or applied magnetic fields. In the present work, isothermal quasi-static magnetisation measurements on the polycrystalline YIBa2Cu307-x system are presented and analysed. An effective granular penetration depth in conjunction with a critical state model, which includes an approximate treatment for the percolation process, is used to obtain many of the salient physical parameters of the grain-boundary Josephson junctions and of the three-dimensional grain boundary junction network. Determination of the temperature and magnetic field dependence of several of these parameters, in particular a magnetic field-independent critical current which depends on the micro structure of the grain-boundary junction network, allows for testing and verification of models of the weak-link and network behaviour. This treatment has been carried out specifically on various silver doped polycrystalline Y1Ba2Cu30 7-x specimens in order to determine and quantify the effects of silver doping. An improvement in the critical current density with silver doping is explained in terms of silver scavenging and ridding grain-boundaries of impurities, and a proximity effect where trace amounts of silver residing in the grain-boundaries decreases the normal resistance of the grain-boundary Josephson junction. The insight gained from silver doping experimentation led to a macroscopic investigation into the joining of large single-domain YIBa2Cu307-x specimens for large-scale applications. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2006.
298

Modeling techniques for power system grounding systems

Papalexopoulos, Alexis D. 08 1900 (has links)
No description available.
299

An alternating current magnetothermoelectric heat pump

Wall, Donald Beatty 12 1900 (has links)
No description available.
300

Experimental and Numerical Modelling of Gravity Currents Preceding Backdrafts

McBryde, James David January 2008 (has links)
This study investigates the turbulent mixing within gravity currents preceding backdrafts and validates the ability of the computational fluid dynamics (CFD) software Fire Dynamics Simulator version 4 (FDS) to simulate these flows. Backdrafts are rapid deflagrations, which occur after the introduction of oxygen into compartments containing unburned gaseous fuel. They may form large fireballs out of the compartment opening and present a significant hazard to the safety of fire-fighters. Gravity currents which precede backdrafts are responsible for the formation of flammable gas mixtures required for ignition. Scale saltwater modelling is used to generate Boussinesq, fully turbulent gravity currents for five different opening geometries, typical of fire compartments. Width-integrated concentration fields and two-dimensional velocity fields are generated using the non-intrusive light attenuation (LA) and particle tracking velocimetry (PTV) flow visualisation techniques respectively. Numerical simulations are carried out with FDS to replicate these flows. The experimental and numerical results are compared directly. Front velocities are shown to be governed directly by local buoyancy conditions, in the later stages of the flows, and therefore the initial conditions associated with the opening geometries only influence the front velocities indirectly. The internal concentration structure, internal velocity structure and location of potential flammable regions are found to be highly opening geometry dependent. In general, the results of the numerical simulations are quantitatively similar to those from experiment, which suggests that the numerical model realistically predicted the experimental flows. However, the numerical concentration fields appear slightly lumpier than those from the experiments, possibly due to unresolved turbulence on scales smaller than the numerical grid (0.01H, where H = compartment height).

Page generated in 0.4182 seconds