Spelling suggestions: "subject:"curvas reduzida"" "subject:"curvas reduzidos""
1 |
Número de Milnor associado a curvas reduzidas / Milnor number associated to reduced curvesSantana, Hellen Monção de Carvalho [UNESP] 07 March 2016 (has links)
Submitted by Hellen Monção de Carvalho Santana (hellenmcarvalho@hotmail.com) on 2016-03-21T13:04:10Z
No. of bitstreams: 1
Versão Final Dissertação (com dia).pdf: 33709454 bytes, checksum: b55274e623607677efb4f7d385bf4e3e (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-03-22T17:36:33Z (GMT) No. of bitstreams: 1
santana_hmc_me_sjrp.pdf: 33709454 bytes, checksum: b55274e623607677efb4f7d385bf4e3e (MD5) / Made available in DSpace on 2016-03-22T17:36:33Z (GMT). No. of bitstreams: 1
santana_hmc_me_sjrp.pdf: 33709454 bytes, checksum: b55274e623607677efb4f7d385bf4e3e (MD5)
Previous issue date: 2016-03-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo deste trabalho é estudar curvas reduzidas. Associado a elas, Buchweitz e Greuel definem um número, chamado número de Milnor de curvas reduzidas, pois no caso de curvas planas este coincide com o número de Milnor definido por Milnor. Este número é obtido através de um importante objeto algébrico: o módulo dual de Grothendieck. Com o intuito de facilitar a obtenção deste número, mostraremos que ele está relacionado com outro número, chamado delta, mais fácil de ser calculado. Por fim, mostraremos que, de maneira análoga, Nuño-Ballesteros e Tomazella definem um número associado a germes de função finita definidos em curvas reduzidas. Este número está relacionado com o grau deste germe e com o número de Milnor da curva reduzida associada. / The aim of this work is to study reduced curves. Associate to them, Buchweitz and Greuel define a number, called Milnor number once that in the case of plane curves, this number coincides to the Milnor number defined by Milnor. This number is obtained through an important algebraic object: dual module of Grothendieck. In order to make it easier to obtain this number, we will prove that it is related to another number, called delta, easier to be computed. At last, we prove that, in the same way, Nuño-Ballesteros and Tomazella define a number associate to finite function germs defined over reduced curves. This number is related to the degree of this germ and to the Milnor number of the reduced curve associated to it.
|
Page generated in 0.0437 seconds