Spelling suggestions: "subject:"curvatura normal conformal"" "subject:"urvatura normal conformal""
1 |
Influência local com procura \"forward\" em modelos de regressão linear / Local influence with forward search in linear regression modelsBustamante, Juan Pablo Mamani 25 February 2015 (has links)
A identificação de observações influentes e/ou aberrantes de um conjunto de dados é conhecida como uma parte das análises de diagnóstico. Esta técnica de diagnóstico têm como uma das finalidades verificar a robustez de um modelo estatístico, pois a não identificação dos dados influentes pode afetar a análise ou obter resultados incorretos. As metodologias comumente utilizadas para o diagnóstico de observações influentes em modelos de regressão são métodos de influência global (Belsey et al., 1980). Cook (1986) introduziu um método geral para avaliar a influência local de pequenas perturbações no modelo estatístico ou nos dados, usando diferentes tipos de perturbações. Como complemento às técnicas de detecção de observações discrepantes, é proposto o método procura \\forward\", por Atkinson e Riani (2000), que é uma metodologia para detectar observações atípicas mascaradas. Neste trabalho, propomos o uso da influência local com procura \"forward\" na obtenção de observações mascaradas influentes considerando modelos de regressão linear. / The identification of influential and/or atypical observations in a data set is known as a part of the diagnostic analysis. One of the purposes of the diagnostic analysis is to verify the robustness of a statistical model, as the non-identification of influential observations can affect the analysis or may cause the obtainment of incorrect results. The most commonly used methodology for the diagnostic of influential observations in regression models are the global influence (Belsey et al., 1980). Cook (1986) introduced a general method to evaluate the local influence of small perturbations in the statistical model or in the data set using different perturbation schemes. As a complement to the techniques of detection atypical observations, it is proposed the forward search procedure by Atkinson e Riani (2000), which is a methodology to detect the masked atypical observations in a data set. In this work we propose the use of the local influence approach together with the forward search to obtain the masked influential observations in linear regression models.
|
2 |
Influência local com procura \"forward\" em modelos de regressão linear / Local influence with forward search in linear regression modelsJuan Pablo Mamani Bustamante 25 February 2015 (has links)
A identificação de observações influentes e/ou aberrantes de um conjunto de dados é conhecida como uma parte das análises de diagnóstico. Esta técnica de diagnóstico têm como uma das finalidades verificar a robustez de um modelo estatístico, pois a não identificação dos dados influentes pode afetar a análise ou obter resultados incorretos. As metodologias comumente utilizadas para o diagnóstico de observações influentes em modelos de regressão são métodos de influência global (Belsey et al., 1980). Cook (1986) introduziu um método geral para avaliar a influência local de pequenas perturbações no modelo estatístico ou nos dados, usando diferentes tipos de perturbações. Como complemento às técnicas de detecção de observações discrepantes, é proposto o método procura \\forward\", por Atkinson e Riani (2000), que é uma metodologia para detectar observações atípicas mascaradas. Neste trabalho, propomos o uso da influência local com procura \"forward\" na obtenção de observações mascaradas influentes considerando modelos de regressão linear. / The identification of influential and/or atypical observations in a data set is known as a part of the diagnostic analysis. One of the purposes of the diagnostic analysis is to verify the robustness of a statistical model, as the non-identification of influential observations can affect the analysis or may cause the obtainment of incorrect results. The most commonly used methodology for the diagnostic of influential observations in regression models are the global influence (Belsey et al., 1980). Cook (1986) introduced a general method to evaluate the local influence of small perturbations in the statistical model or in the data set using different perturbation schemes. As a complement to the techniques of detection atypical observations, it is proposed the forward search procedure by Atkinson e Riani (2000), which is a methodology to detect the masked atypical observations in a data set. In this work we propose the use of the local influence approach together with the forward search to obtain the masked influential observations in linear regression models.
|
3 |
"Análise de um modelo de regressão com erros nas variáveis multivariado com intercepto nulo" / "Analysis on a multivariate null-intercept errors-in-variables regression model"Russo, Cibele Maria 19 June 2006 (has links)
Para analisar características de interesse a respeito de um conjunto de dados reais da área de Odontologia apresentado em Hadgu & Koch (1999), ajustaremos um modelo de regressão linear multivariado com erros nas variáveis com intercepto nulo. Este conjunto de dados é caracterizado por medições de placa bacteriana em três grupos de voluntários, antes e após utilizar dois líquidos de bochecho experimentais e um líquido de bochecho controle, com medições (sujeitas a erros de medição) no início do estudo, após três e seis meses de utilização dos líquidos. Neste caso, uma possível estrutura de dependência entre as medições feitas em um mesmo indivíduo deve ser incorporada ao modelo e, além disto, temos duas variáveis resposta para cada indivíduo. Após a apresentação do modelo estatístico, iremos obter estimativas de máxima verossimilhança dos parâmetros utilizando o algoritmo iterativo EM e testaremos as hipóteses de interesse utilizando testes assintóticos de Wald, razão de verossimilhanças e score. Como neste caso não existe um teste ótimo, faremos um estudo de simulação para verificar o comportamento das três estatísticas de teste em relação a diferentes tamanhos amostrais e diferentes valores de parâmetros. Finalmente, faremos um estudo de diagnóstico buscando identificar possíveis pontos influentes no modelo, considerando o enfoque de influência local proposto por Cook (1986) e a medida de curvatura normal conformal desenvolvida por Poon & Poon (1999). / To analyze some characteristics of interest in a real odontological data set presented in Hadgu & Koch (1999), we propose the use of a multivariate null intercept errors-in-variables regression model. This data set is composed by measurements of dental plaque index (with measurement errors), which were measured in volunteers who were randomized to two experimental mouth rinses (A and B) or a control mouth rinse. The measurements were taken in each individual, before and after the use of the respective mouth rinses, in the beginning of the study, after three months from the baseline and after six months from the baseline. In this case, a possible structure of dependency between the measurements taken within the same individual must be incorporated in the model. After presenting the statistical model, we obtain the maximum likelihood estimates of the parameters using the numerical algorithm EM, and we test the hypotheses of interest considering asymptotic tests (Wald, likelihood ratio and score). Also, a simulation study to verify the behavior of these three test statistics is presented, considering diferent sample sizes and diferent values for the parameters. Finally, we make a diagnostic study to identify possible influential observations in the model, considering the local influence approach proposed by Cook (1986) and the conformal normal curvature proposed by Poon & Poon (1999).
|
4 |
"Análise de um modelo de regressão com erros nas variáveis multivariado com intercepto nulo" / "Analysis on a multivariate null-intercept errors-in-variables regression model"Cibele Maria Russo 19 June 2006 (has links)
Para analisar características de interesse a respeito de um conjunto de dados reais da área de Odontologia apresentado em Hadgu & Koch (1999), ajustaremos um modelo de regressão linear multivariado com erros nas variáveis com intercepto nulo. Este conjunto de dados é caracterizado por medições de placa bacteriana em três grupos de voluntários, antes e após utilizar dois líquidos de bochecho experimentais e um líquido de bochecho controle, com medições (sujeitas a erros de medição) no início do estudo, após três e seis meses de utilização dos líquidos. Neste caso, uma possível estrutura de dependência entre as medições feitas em um mesmo indivíduo deve ser incorporada ao modelo e, além disto, temos duas variáveis resposta para cada indivíduo. Após a apresentação do modelo estatístico, iremos obter estimativas de máxima verossimilhança dos parâmetros utilizando o algoritmo iterativo EM e testaremos as hipóteses de interesse utilizando testes assintóticos de Wald, razão de verossimilhanças e score. Como neste caso não existe um teste ótimo, faremos um estudo de simulação para verificar o comportamento das três estatísticas de teste em relação a diferentes tamanhos amostrais e diferentes valores de parâmetros. Finalmente, faremos um estudo de diagnóstico buscando identificar possíveis pontos influentes no modelo, considerando o enfoque de influência local proposto por Cook (1986) e a medida de curvatura normal conformal desenvolvida por Poon & Poon (1999). / To analyze some characteristics of interest in a real odontological data set presented in Hadgu & Koch (1999), we propose the use of a multivariate null intercept errors-in-variables regression model. This data set is composed by measurements of dental plaque index (with measurement errors), which were measured in volunteers who were randomized to two experimental mouth rinses (A and B) or a control mouth rinse. The measurements were taken in each individual, before and after the use of the respective mouth rinses, in the beginning of the study, after three months from the baseline and after six months from the baseline. In this case, a possible structure of dependency between the measurements taken within the same individual must be incorporated in the model. After presenting the statistical model, we obtain the maximum likelihood estimates of the parameters using the numerical algorithm EM, and we test the hypotheses of interest considering asymptotic tests (Wald, likelihood ratio and score). Also, a simulation study to verify the behavior of these three test statistics is presented, considering diferent sample sizes and diferent values for the parameters. Finally, we make a diagnostic study to identify possible influential observations in the model, considering the local influence approach proposed by Cook (1986) and the conformal normal curvature proposed by Poon & Poon (1999).
|
Page generated in 0.0898 seconds