• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Infinitely Divisible Metrics, Curvature Inequalities And Curvature Formulae

Keshari, Dinesh Kumar 07 1900 (has links) (PDF)
The curvature of a contraction T in the Cowen-Douglas class is bounded above by the curvature of the backward shift operator. However, in general, an operator satisfying the curvature inequality need not be contractive. In this thesis, we characterize a slightly smaller class of contractions using a stronger form of the curvature inequality. Along the way, we find conditions on the metric of the holomorphic Hermitian vector bundle E corresponding to the operator T in the Cowen-Douglas class which ensures negative definiteness of the curvature function. We obtain a generalization for commuting tuples of operators in the Cowen-Douglas class. Secondly, we obtain an explicit formula for the curvature of the jet bundle of the Hermitian holomorphic bundle E f on a planar domain Ω. Here Ef is assumed to be a pull-back of the tautological bundle on gr(n, H ) by a nondegenerate holomorphic map f :Ω →Gr (n, H ). Clearly, finding relationships amongs the complex geometric invariants inherent in the short exact sequence 0 → Jk(Ef ) → Jk+1(Ef ) →J k+1(Ef )/ Jk(Ef ) → 0 is an important problem, whereJk(Ef ) represents the k-th order jet bundle. It is known that the Chern classes of these bundles must satisfy c(Jk+1(Ef )) = c(Jk(Ef )) c(Jk+1(Ef )/ Jk(Ef )). We obtain a refinement of this formula: trace Idnxn ( KJk(Ef )) - trace Idnxn ( KJk-1(Ef ))= KJk(Ef )/ Jk-1(Ef )(z).

Page generated in 0.0941 seconds