Spelling suggestions: "subject:"curve singularities"" "subject:"kurve singularities""
1 |
The link of suspension singularities and Zariski’s conjectureMendris, Robert 02 October 2003 (has links)
No description available.
|
2 |
Invariantes de germes de aplicaçõesAment, Daiane Alice Henrique 19 April 2017 (has links)
Submitted by Ronildo Prado (ronisp@ufscar.br) on 2017-08-09T18:34:01Z
No. of bitstreams: 1
TeseDAHA.pdf: 605987 bytes, checksum: 218da6f6f0b14c9296bc76440e616467 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-09T18:34:10Z (GMT) No. of bitstreams: 1
TeseDAHA.pdf: 605987 bytes, checksum: 218da6f6f0b14c9296bc76440e616467 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-09T18:34:17Z (GMT) No. of bitstreams: 1
TeseDAHA.pdf: 605987 bytes, checksum: 218da6f6f0b14c9296bc76440e616467 (MD5) / Made available in DSpace on 2017-08-09T18:34:26Z (GMT). No. of bitstreams: 1
TeseDAHA.pdf: 605987 bytes, checksum: 218da6f6f0b14c9296bc76440e616467 (MD5)
Previous issue date: 2017-04-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this work, we show relations between invariants of map germs. First, we consider an analytic function germ f : (X, 0) —(C, 0) on an isolated determinantal singularity and we present a relation between the Euler obstruction of f and the determinantal Milnor number of f. In the particular case where (X, 0) is an isolated complete intersection singularity, we obtain a simple way to calculate the Euler obstruction of f as the difference between the dimension of two algebras. After, we work with map germs f : (X, 0) —— (C2, 0), where (X, 0) is a plane curve with isolated singularity. We introduce the image Milnor number to these map germs and we present a positive answer to the Mond’s conjecture in this context. The Mond’s conjecture proposes an inequality between two other invariants, the A^-codimension and the image Milnor number, in the case of map germs f : (Cn, 0) —(Cn+1, 0) when the dimensions (n,n + 1) is in Mather’s nice dimensions. The conjecture is true for n = 1, 2, and for the cases n > 3 is an open problem. / Neste trabalho, mostramos relações entre invariantes de germes de aplicações. Primeiro, consideramos um germe de funçao analítica f : (X, 0)^(C, 0) sobre uma singularidade determinantal isolada e apresentamos uma relaçao entre a obstrução de Euler de f e o número de Milnor determinantal de f. No caso particular em que (X, 0) e uma interseçao completa com singularidade isolada, obtemos um modo simples de calcular a obstrucao de Euler de f como a diferenca entre dimensães de duas algebras. Depois, trabalhamos com germes de aplicacoes f : (X, 0)^(C2, 0), onde (X, 0) e uma curva plana com singularidade isolada. Introduzimos o número de Milnor da imagem para estes germes de aplicacães e apresentamos uma resposta positiva para a conjectura de Mond neste contexto. A conjectura de Mond propoe uma desigualdade entre outros dois invariantes, a A^-codimensao e o numero de Milnor da imagem, para o caso de germes de aplicacoes f : (Cn, 0)^(Cn+1,0) quando as dimensoes (n,n + 1) estao nas boas dimensoes de Mather. A conjectura e verdadeira para n = 1, 2, e para os casos n > 3 e um problema em aberto.
|
Page generated in 0.0988 seconds