• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 50
  • 32
  • 15
  • 13
  • 11
  • 10
  • 10
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Curvelet-domain multiple elimination with sparseness constraints.

Herrmann, Felix J., Verschuur, Eric January 2004 (has links)
Predictive multiple suppression methods consist of two main steps: a prediction step, in which multiples are predicted from the seismic data, and a subtraction step, in which the predicted multiples are matched with the true multiples in the data. The last step appears crucial in practice: an incorrect adaptive subtraction method will cause multiples to be sub-optimally subtracted or primaries being distorted, or both. Therefore, we propose a new domain for separation of primaries and multiples via the Curvelet transform. This transform maps the data into almost orthogonal localized events with a directional and spatialtemporal component. The multiples are suppressed by thresholding the input data at those Curvelet components where the predicted multiples have large amplitudes. In this way the more traditional filtering of predicted multiples to fit the input data is avoided. An initial field data example shows a considerable improvement in multiple suppression.
2

Separation of primaries and multiples by non-linear estimation in the curvelet domain

Herrmann, Felix J., Verschuur, Eric January 2004 (has links)
Predictive multiple suppression methods consist of two main steps: a prediction step, in which multiples are predicted from the seismic data, and a subtraction step, in which the predicted multiples are matched with the true multiples in the data. The last step appears crucial in practice: an incorrect adaptive subtraction method will cause multiples to be sub-optimally subtracted or primaries being distorted, or both. Therefore, we propose a new domain for separation of primaries and multiples via the Curvelet transform. This transform maps the data into almost orthogonal localized events with a directional and spatial-temporal component. The multiples are suppressed by thresholding the input data at those Curvelet components where the predicted multiples have large amplitudes. In this way the more traditional filtering of predicted multiples to fit the input data is avoided. An initial field data example shows a considerable improvement in multiple suppression.
3

Seismic deconvolution revisited with curvelet frames

Hennenfent, Gilles, Herrmann, Felix J., Neelamani, Ramesh January 2005 (has links)
We propose an efficient iterative curvelet-regularized deconvolution algorithm that exploits continuity along reflectors in seismic images. Curvelets are a new multiscale transform that provides sparse representations for images (such as seismic images) that comprise smooth objects separated by piece-wise smooth discontinuities. Our technique combines conjugate gradient-based convolution operator inversion with noise regularization that is performed using non-linear curvelet coefficient shrinkage (thresholding). The shrinkage operation leverages the sparsity of curvelets representations. Simulations demonstrate that our algorithm provides improved resolution compared to the traditional Wiener-based deconvolution approach.
4

Curvelet-domain least-squares migration with sparseness constraints.

Herrmann, Felix J., Moghaddam, Peyman P. January 2004 (has links)
A non-linear edge-preserving solution to the least-squares migration problem with sparseness constraints is introduced. The applied formalism explores Curvelets as basis functions that, by virtue of their sparseness and locality, not only allow for a reduction of the dimensionality of the imaging problem but which also naturally lead to a non-linear solution with significantly improved signalto-noise ratio. Additional conditions on the image are imposed by solving a constrained optimization problem on the estimated Curvelet coefficients initialized by thresholding. This optimization is designed to also restore the amplitudes by (approximately) inverting the normal operator, which is like-wise the (de)-migration operators, almost diagonalized by the Curvelet transform.
5

Sampling and reconstruction of seismic wavefields in the curvelet domain

Gilles, Hennenfent 05 1900 (has links)
Wavefield reconstruction is a crucial step in the seismic processing flow. For instance, unsuccessful interpolation leads to erroneous multiple predictions that adversely affect the performance of multiple elimination, and to imaging artifacts. We present a new non-parametric transform-based reconstruction method that exploits the compression of seismic data b the recently developed curvelet transform. The elements of this transform, called curvelets, are multi-dimensional, multi-scale, and multi-directional. They locally resemble wavefronts present in the data, which leads to a compressible representation for seismic data. This compression enables us to formulate a new curvelet-based seismic data recovery algorithm through sparsity-promoting inversion (CRSI). The concept of sparsity-promoting inversion is in itself not new to geophysics. However, the recent insights from the field of "compressed sensing" are new since they clearly identify the three main ingredients that go into a successful formulation of a reconstruction problem, namely a sparsifying transform, a sub-Nyquist sampling strategy that subdues coherent aliases in the sparsifying domain, and a data-consistent sparsity-promoting program. After a brief overview of the curvelet transform and our seismic-oriented extension to the fast discrete curvelet transform, we detail the CRSI formulation and illustrate its performance on synthetic and read datasets. Then, we introduce a sub-Nyquist sampling scheme, termed jittered undersampling, and show that, for the same amount of data acquired, jittered data are best interpolated using CRSI compared to regular or random undersampled data. We also discuss the large-scale one-norm solver involved in CRSI. Finally, we extend CRSI formulation to other geophysical applications and present results on multiple removal and migration-amplitude recovery.
6

Sampling and reconstruction of seismic wavefields in the curvelet domain

Gilles, Hennenfent 05 1900 (has links)
Wavefield reconstruction is a crucial step in the seismic processing flow. For instance, unsuccessful interpolation leads to erroneous multiple predictions that adversely affect the performance of multiple elimination, and to imaging artifacts. We present a new non-parametric transform-based reconstruction method that exploits the compression of seismic data b the recently developed curvelet transform. The elements of this transform, called curvelets, are multi-dimensional, multi-scale, and multi-directional. They locally resemble wavefronts present in the data, which leads to a compressible representation for seismic data. This compression enables us to formulate a new curvelet-based seismic data recovery algorithm through sparsity-promoting inversion (CRSI). The concept of sparsity-promoting inversion is in itself not new to geophysics. However, the recent insights from the field of "compressed sensing" are new since they clearly identify the three main ingredients that go into a successful formulation of a reconstruction problem, namely a sparsifying transform, a sub-Nyquist sampling strategy that subdues coherent aliases in the sparsifying domain, and a data-consistent sparsity-promoting program. After a brief overview of the curvelet transform and our seismic-oriented extension to the fast discrete curvelet transform, we detail the CRSI formulation and illustrate its performance on synthetic and read datasets. Then, we introduce a sub-Nyquist sampling scheme, termed jittered undersampling, and show that, for the same amount of data acquired, jittered data are best interpolated using CRSI compared to regular or random undersampled data. We also discuss the large-scale one-norm solver involved in CRSI. Finally, we extend CRSI formulation to other geophysical applications and present results on multiple removal and migration-amplitude recovery.
7

Sampling and reconstruction of seismic wavefields in the curvelet domain

Gilles, Hennenfent 05 1900 (has links)
Wavefield reconstruction is a crucial step in the seismic processing flow. For instance, unsuccessful interpolation leads to erroneous multiple predictions that adversely affect the performance of multiple elimination, and to imaging artifacts. We present a new non-parametric transform-based reconstruction method that exploits the compression of seismic data b the recently developed curvelet transform. The elements of this transform, called curvelets, are multi-dimensional, multi-scale, and multi-directional. They locally resemble wavefronts present in the data, which leads to a compressible representation for seismic data. This compression enables us to formulate a new curvelet-based seismic data recovery algorithm through sparsity-promoting inversion (CRSI). The concept of sparsity-promoting inversion is in itself not new to geophysics. However, the recent insights from the field of "compressed sensing" are new since they clearly identify the three main ingredients that go into a successful formulation of a reconstruction problem, namely a sparsifying transform, a sub-Nyquist sampling strategy that subdues coherent aliases in the sparsifying domain, and a data-consistent sparsity-promoting program. After a brief overview of the curvelet transform and our seismic-oriented extension to the fast discrete curvelet transform, we detail the CRSI formulation and illustrate its performance on synthetic and read datasets. Then, we introduce a sub-Nyquist sampling scheme, termed jittered undersampling, and show that, for the same amount of data acquired, jittered data are best interpolated using CRSI compared to regular or random undersampled data. We also discuss the large-scale one-norm solver involved in CRSI. Finally, we extend CRSI formulation to other geophysical applications and present results on multiple removal and migration-amplitude recovery. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
8

Three-term amplitude-versus-offset (avo) inversion revisited by curvelet and wavelet transforms

Hennenfent, Gilles, Herrmann, Felix J. January 2004 (has links)
We present a new method to stabilize the three-term AVO inversion using Curvelet and Wavelet transforms. Curvelets are basis functions that effectively represent otherwise smooth objects having discontinuities along smooth curves. The applied formalism explores them to make the most of the continuity along reflectors in seismic images. Combined with Wavelets, Curvelets are used to denoise the data by penalizing high frequencies and small contributions in the AVO-cube. This approach is based on the idea that rapid amplitude changes along the ray-parameter axis are most likely due to noise. The AVO-inverse problem is linearized, formulated and solved for all (x, z) at once. Using densities and velocities of the Marmousi model to define the fluctuations in the elastic properties, the performance of the proposed method is studied and compared with the smoothing along the ray-parameter direction only. We show that our method better approximates the true data after the denoising step, especially when noise level increases.
9

Curvelet transform with adaptive tiling

Al Marzouqi, Hasan 12 January 2015 (has links)
In this dissertation we address the problem of adapting frequency domain tiling using the curvelet transform as the basis algorithm. The optimal tiling, for a given class of images, is computed using denoising performance as the cost function. The major adaptations considered are: the number of scale decompositions, angular decompositions per scale/quadrant, and scale locations. A global optimization algorithm combining the three adaptations is proposed. Denoising performance of adaptive curvelets is tested on seismic and face data sets. The developed adaptation procedure is applied to a number of different application areas. Adaptive curvelets are used to solve the problem of sparse data recovery from subsampled measurements. Performance comparison with default curvelets demonstrates the effectiveness of the adaptation scheme. Adaptive curvelets are also used in the development of a novel image similarity index. The developed measure succeeds in retrieving correct matches from a variety of textured materials. Furthermore, we present an algorithm for classifying different types of seismic activities.
10

Curvelet-based ground roll removal

Yarham, Carson, Boeniger, Urs, Herrmann, Felix J. January 2006 (has links)
We have effectively identified and removed ground roll through a twostep process. The first step is to identify the major components of the ground roll through various methods including multiscale separation, directional or frequency filtering or by any other method that identifies the ground roll. Given this estimate for ground roll, the recorded signal is separated during the second step through a block-coordinate relaxation method that seeks the sparsest set for weighted curvelet coefficients of the ground roll and the sought-after reflectivity. The combination of these two methods allows us to separate out the ground roll signal while preserving the reflector information. Since our method is iterative, we have control of the separation process. We successfully tested our algorithm on a real data set with a complex ground roll and reflector structure.

Page generated in 0.0404 seconds