• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

IFNλ stimulates MxA production in human dermal fibroblasts via a MAPK-dependent STAT1-independent mechanism

Alase, Adewonuola A., El-Sherbiny, Y., Vital, E., Tobin, Desmond J., Turner, N.A., Wittmann, Miriam 08 1900 (has links)
Yes / Interferon lambda (IFNλ) is important for epidermal defence against viruses. It is produced by, and acts on, keratinocytes, whereas fibroblasts were previously considered to be unresponsive to this type III IFN. Herein we report findings revealing cell type-specific differences in IFNλ signalling and function in skin resident cells. In dermal fibroblasts, IFNλ induced the expression of MxA, a potent antiviral factor, but not other IFN signature genes as it does in primary keratinocytes. In contrast to its effect on keratinocytes, IFNλ did not phosphorylate STAT1 in fibroblasts, but instead activated MAPKs. Accordingly, inhibition of MAPK activation (p38 and p42/44) blocked the expression of MxA protein in fibroblasts but not in keratinocytes. Functionally, IFNλ inhibited proliferation in keratinocytes but not in fibroblasts. Moreover, IFNλ upregulated the expression of TGFβ1-induced collagens in fibroblasts. Taken together, our findings identify primary human dermal fibroblasts as responder cells to IFNλ. Our study shows cutaneous cell type-specific IFN signalling and suggests that IFNλ, whilst important for epidermal anti-viral competence, may also have a regulatory role in the dermal compartment balancing type I IFN-induced inhibition of tissue repair processes.

Page generated in 0.1005 seconds