• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the strength of saturated cement-treated soil reconstituted by wet-mixing

Lewsley, Gregory 11 1900 (has links)
Cutter Soil Mixing (CSM) is a recently developed deep mixing technique that has grown to include the treatment of sandy and silty soils. This study seeks to investigate the influence of (i) sand-silt ratio, (ii) cement content, (iii) water content and (iv) time on the unconfined compressive strength of saturated cement-treated soil specimens. A new test device and method of specimen reconstitution were conceived in order to obtain a saturated mix of soil and cement. A comparison of results show strength increases non-linearly to decreasing total water-cement ratio, and that this trend is largely independent of sand-silt ratio. Furthermore, strength increases non-linearly with time and is independent of sand-silt ratio. Lastly, it is recommended that the strength be correlated with total water-cement ratio rather than cement content, in order to improve data reporting and provide design guidance to engineering practice.
2

On the strength of saturated cement-treated soil reconstituted by wet-mixing

Lewsley, Gregory 11 1900 (has links)
Cutter Soil Mixing (CSM) is a recently developed deep mixing technique that has grown to include the treatment of sandy and silty soils. This study seeks to investigate the influence of (i) sand-silt ratio, (ii) cement content, (iii) water content and (iv) time on the unconfined compressive strength of saturated cement-treated soil specimens. A new test device and method of specimen reconstitution were conceived in order to obtain a saturated mix of soil and cement. A comparison of results show strength increases non-linearly to decreasing total water-cement ratio, and that this trend is largely independent of sand-silt ratio. Furthermore, strength increases non-linearly with time and is independent of sand-silt ratio. Lastly, it is recommended that the strength be correlated with total water-cement ratio rather than cement content, in order to improve data reporting and provide design guidance to engineering practice.
3

On the strength of saturated cement-treated soil reconstituted by wet-mixing

Lewsley, Gregory 11 1900 (has links)
Cutter Soil Mixing (CSM) is a recently developed deep mixing technique that has grown to include the treatment of sandy and silty soils. This study seeks to investigate the influence of (i) sand-silt ratio, (ii) cement content, (iii) water content and (iv) time on the unconfined compressive strength of saturated cement-treated soil specimens. A new test device and method of specimen reconstitution were conceived in order to obtain a saturated mix of soil and cement. A comparison of results show strength increases non-linearly to decreasing total water-cement ratio, and that this trend is largely independent of sand-silt ratio. Furthermore, strength increases non-linearly with time and is independent of sand-silt ratio. Lastly, it is recommended that the strength be correlated with total water-cement ratio rather than cement content, in order to improve data reporting and provide design guidance to engineering practice. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
4

A técnica de Cutter Soil Mixing aplicada a escavações urbanas : aspectos gerais e caso de estudo

Sousa, Estela Diana Costa January 2010 (has links)
Tese de mestrado integrado. Engenharia Civil (Especialização em Geotecnia). Faculdade de Engenharia. Universidade do Porto. 2010

Page generated in 0.0613 seconds