• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Empirical analysis of cutting force constants in micro end milling operations

Newby, Glynn 25 May 2005 (has links)
The development of miniaturized technologies has become a global phenomenon that continues to make an impact across a broad range of applications that encompasses many diverse fields and industries including telecommunications, portable consumer electronics, defense, and biomedical. Subsequently this trend has caused more and more interest in the issues involved in the design, development, operation and analysis of equipment and processes for manufacturing micro components. One technology used to create these miniaturized components is micro end milling. The cutting forces of the micro end milling process provide vital information for the design, modeling, and control of the machining process. To gain an understanding of forces in micro end milling operations, a model of average chip thickness is derived and the differences between conventional end milling and micro end milling are enumerated. From the experimental results, empirical models for specific cutting constants were derived and compared the generally accepted forms for conventional end milling operations. These models provide a tool for the estimation of cutting forces in micro end milling.
2

Fundamentos do fresamento: uma aplicação em microfresamento / Fundamentals of end milling operation: an application to micro end milling

Dib, Marcel Henrique Militão 17 September 2013 (has links)
Nos últimos anos, o estudo do microfresamento tem recebido grande atenção devido a seu uso na fabricação de microcomponentes como células de combustível, microatuadores ou sensores, circuitos integrados, etc. O objetivo deste trabalho é apresentar os fundamentos do fresamento aplicados ao microfresamento. Para isto foi investigado, em escala reduzida, o comportamento de alguns princípios fundamentais da usinagem convencional, tais como espessura de corte instantânea, espessura de corte média, força de corte, pressão específica de corte, potência de corte, entre outros. A importância deste trabalho justifica-se pela necessidade de se entender como estes princípios comportam-se em escalas reduzidas. Inicialmente foi realizada uma investigação da literatura a fim de mostrar a origem de alguns destes princípios fundamentais. Em seguida, uma análise critica destes fundamentos foi apresentada e experimentos foram realizados com o intuito de confrontar o levantamento teórico com os resultados práticos. Para isso foram realizados testes de microfresamento com duas microfresas de metal duro constituídas de dois dentes cada uma com diâmetro de 0,8 mm. O raio da aresta de corte de cada ferramenta foi medido usando um microscópio confocal e os valores variaram de 1,8 \'mü\'m a 3,3 \'mü\'m. O material usado nos experimentos foi um alumínio liga (RSA 6061) de grãos ultrafinos (valor médio de 1 \'mü\'m). O fresamento adotado foi o frontal parcial (não engajado) com penetrações de trabalho de 0,2 mm e 0,4 mm. Os avanços por dente usados foram de 5 \'mü\'m e 10 \'mü\'m a uma profundidade de usinagem de 50 \'mü\'m. A máquina usada foi um centro de usinagem CNC de três eixos com potência nominal de 18 kw e rotação máxima de 24000 RPM. A máxima velocidade de corte alcançada foi de 50 m/min. Para coletar o sinal das forças de usinagem um dinamômetro piezoelétrico modelo 9256 C2 (Kistler) foi usado. Os resultados experimentais mostraram que o comportamento da variação da força de corte, o aumento da pressão específica de corte com o decréscimo da espessura de corte, energia de corte, potência de corte e representação da energia e potência de corte com base na força de corte média durante a formação do cavaco, são semelhantes ao comportamento destes parâmetros durante a usinagem convencional. Com base nestes resultados, foi mostrado que os fundamentos do fresamento podem ser aplicados em microfresamento para explicar o comportamento da microusinagem. / Recently, micro end milling is a subject that has received a large contribution due to its feasibility to be applied to the manufacturing of micro components such as fuel cells, micro actuators and sensors, integrated circuits, etc. The objective of this study is to present fundamental principles of machining of end milling operation applied to the micro end milling operation. It will be investigated the behavior at small scale of some known conventional machining parameters such as instantaneous thickness of cut, average thickness of cut, cutting force, specific cutting pressure, cutting power among others. The relevance of this study is justified by the need of understanding how those cutting parameters behave when the machining scale is reduced. Firstly, a review of the literature was carried out in order to show the origin of some fundamental principles of machining of materials. Thereafter, a critical analysis was held on these fundamentals and experimental cutting tests were designed and carried out aiming to comparing the experimental results with the expected trend shown by those parameters in conventional machining scale. The micro end milling tests used two carbide two teeth micro end mills with a diameter of 0,8 mm. The cutting edge of each tool was measured using a confocal optical profiler and the values ranged from 1,8 \'mü\'m up to 3,3 \'mü\'m. The workpiece material used in the cutting experiments was an ultra fine grain (average 1 \'mü\'m) aluminum alloy (RSA 6061). The machining operation was partial (not engaged) end milling with radial depths of cut of 0,2 mm and 0,4 mm. The feed per tooth used were 5 \'mü\'m and 10 \'mü\'m at constant depth of cut of 50 \'mü\'m. The machine tool used was a three axis CNC machining center with 18 kw nominal power and maximum spindle speed of 24000 RPM. At the maximum spindle speed the maximum cutting speed reached was 50 m/min. A mini piezoelectric dynamometer multicomponent model 9256 C2 (Kistler) was used to gather the cutting forces signals during machining. Therefore, the experimental results showed that the cutting force variation behavior, the increase of specific cutting pressure with the decrease of thickness of cut, cutting energy, cutting power, representing the energy and cutting power representation based on the average cutting force during chip formation are similar to the behavior of these parameters during conventional machining. Based upon that it is shown that the fundamental principles may well be applied to explain the machining behavior at very reduced scales during micro end milling operation.
3

Fundamentos do fresamento: uma aplicação em microfresamento / Fundamentals of end milling operation: an application to micro end milling

Marcel Henrique Militão Dib 17 September 2013 (has links)
Nos últimos anos, o estudo do microfresamento tem recebido grande atenção devido a seu uso na fabricação de microcomponentes como células de combustível, microatuadores ou sensores, circuitos integrados, etc. O objetivo deste trabalho é apresentar os fundamentos do fresamento aplicados ao microfresamento. Para isto foi investigado, em escala reduzida, o comportamento de alguns princípios fundamentais da usinagem convencional, tais como espessura de corte instantânea, espessura de corte média, força de corte, pressão específica de corte, potência de corte, entre outros. A importância deste trabalho justifica-se pela necessidade de se entender como estes princípios comportam-se em escalas reduzidas. Inicialmente foi realizada uma investigação da literatura a fim de mostrar a origem de alguns destes princípios fundamentais. Em seguida, uma análise critica destes fundamentos foi apresentada e experimentos foram realizados com o intuito de confrontar o levantamento teórico com os resultados práticos. Para isso foram realizados testes de microfresamento com duas microfresas de metal duro constituídas de dois dentes cada uma com diâmetro de 0,8 mm. O raio da aresta de corte de cada ferramenta foi medido usando um microscópio confocal e os valores variaram de 1,8 \'mü\'m a 3,3 \'mü\'m. O material usado nos experimentos foi um alumínio liga (RSA 6061) de grãos ultrafinos (valor médio de 1 \'mü\'m). O fresamento adotado foi o frontal parcial (não engajado) com penetrações de trabalho de 0,2 mm e 0,4 mm. Os avanços por dente usados foram de 5 \'mü\'m e 10 \'mü\'m a uma profundidade de usinagem de 50 \'mü\'m. A máquina usada foi um centro de usinagem CNC de três eixos com potência nominal de 18 kw e rotação máxima de 24000 RPM. A máxima velocidade de corte alcançada foi de 50 m/min. Para coletar o sinal das forças de usinagem um dinamômetro piezoelétrico modelo 9256 C2 (Kistler) foi usado. Os resultados experimentais mostraram que o comportamento da variação da força de corte, o aumento da pressão específica de corte com o decréscimo da espessura de corte, energia de corte, potência de corte e representação da energia e potência de corte com base na força de corte média durante a formação do cavaco, são semelhantes ao comportamento destes parâmetros durante a usinagem convencional. Com base nestes resultados, foi mostrado que os fundamentos do fresamento podem ser aplicados em microfresamento para explicar o comportamento da microusinagem. / Recently, micro end milling is a subject that has received a large contribution due to its feasibility to be applied to the manufacturing of micro components such as fuel cells, micro actuators and sensors, integrated circuits, etc. The objective of this study is to present fundamental principles of machining of end milling operation applied to the micro end milling operation. It will be investigated the behavior at small scale of some known conventional machining parameters such as instantaneous thickness of cut, average thickness of cut, cutting force, specific cutting pressure, cutting power among others. The relevance of this study is justified by the need of understanding how those cutting parameters behave when the machining scale is reduced. Firstly, a review of the literature was carried out in order to show the origin of some fundamental principles of machining of materials. Thereafter, a critical analysis was held on these fundamentals and experimental cutting tests were designed and carried out aiming to comparing the experimental results with the expected trend shown by those parameters in conventional machining scale. The micro end milling tests used two carbide two teeth micro end mills with a diameter of 0,8 mm. The cutting edge of each tool was measured using a confocal optical profiler and the values ranged from 1,8 \'mü\'m up to 3,3 \'mü\'m. The workpiece material used in the cutting experiments was an ultra fine grain (average 1 \'mü\'m) aluminum alloy (RSA 6061). The machining operation was partial (not engaged) end milling with radial depths of cut of 0,2 mm and 0,4 mm. The feed per tooth used were 5 \'mü\'m and 10 \'mü\'m at constant depth of cut of 50 \'mü\'m. The machine tool used was a three axis CNC machining center with 18 kw nominal power and maximum spindle speed of 24000 RPM. At the maximum spindle speed the maximum cutting speed reached was 50 m/min. A mini piezoelectric dynamometer multicomponent model 9256 C2 (Kistler) was used to gather the cutting forces signals during machining. Therefore, the experimental results showed that the cutting force variation behavior, the increase of specific cutting pressure with the decrease of thickness of cut, cutting energy, cutting power, representing the energy and cutting power representation based on the average cutting force during chip formation are similar to the behavior of these parameters during conventional machining. Based upon that it is shown that the fundamental principles may well be applied to explain the machining behavior at very reduced scales during micro end milling operation.

Page generated in 0.0641 seconds