• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 10
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 17
  • 15
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Time series modeling in water loss

Chuang, Wen-Cheng. January 1987 (has links)
Thesis (M.S.)--Ohio University, June, 1987. / Title from PDF t.p.
2

Application of digital process simulation on an automotive production line

Hua, T., Sowe, M., Van Niekerk, T.I., Holdack-Ianssen, H., Du Preez, K., Pienaar, S. January 2010 (has links)
Published Article / This paper presents the work on the development of a digital simulation model for the transportation line in a local automotive manufacturing plant. It describes a structured procedure of data collection, digital design, model building, activity creation, and process simulation using simulation tool Delmia. Based on the digital simulation model, new alternative concepts of production line planning strategy can be easily integrated into the model to evaluate the cycle time/cost and to optimise the production line. The demonstration result indicates that digital simulation can be used as a powerful tool to reduce planning risk, identify material flow bottlenecks, and to improve throughput and knowledge share within the company.
3

Dynamic Control of Serial-batch Processing Systems

Cerekci, Abdullah 14 January 2010 (has links)
This research explores how near-future information can be used to strategically control a batch processor in a serial-batch processor system setting. Specifically, improved control is attempted by using the upstream serial processor to provide near-future arrival information to the batch processor and further meet the re-sequencing requests to shorten critical products? arrival times to the batch processor. The objective of the research is to reduce mean cycle time and mean tardiness of the products being processed by the serial-batch processor system. This research first examines how mean cycle time performance of the batch processor can be improved by an upstream re-sequencing approach. A control strategy is developed by combining a look-ahead control approach with an upstream re-sequencing approach and is then compared with benchmark strategies through simulation. The experimental results indicate that the new control strategy effectively improves mean cycle time performance of the serial-batch processor system, especially when the number of product types is large and batch processor traffic intensity is low or medium. These conditions are often observed in typical semiconductor manufacturing environments. Next, the use of near-future information and an upstream re-sequencing approach is investigated for improving the mean tardiness performance of the serial-batch processor system. Two control strategies are devised and compared with the benchmark strategies through simulation. The experimental results show that the proposed control strategies improve the mean tardiness performance of the serial-batch processor system. Finally, the look-ahead control approaches that focus on mean cycle time and mean tardiness performances of the serial-batch processor system are embedded under a new control strategy that focuses on both performance measures simultaneously. It is demonstrated that look-ahead batching can be effectively used as a tool for controlling batch processors when multiple performance measures exist.
4

Resolving the influence of work sequencing which includes overhead work: implications for job cycle designs

Meszaros, Kimberly January 2013 (has links)
Many industrial workplaces involve tasks that require work to be performed in overhead postures. Epidemiological evidence suggests that working in these unavoidable, awkward postures leads to development of shoulder fatigue, pain and several musculoskeletal disorders. The accumulation of localized muscle fatigue has been strongly associated with the development of work-related musculoskeletal injuries (Armstrong et al., 1993). In order to prevent injury, minimizing muscular fatigue during short-cycled, repetitive work through different work organization schemes has been suggested (Dempsey et al., 2010). Previous research has examined the interactive effect of altering contraction level, duty cycle and cycle times on shoulder muscle fatigue. However, isolation of one factor while maintaining a constant workload has not been examined for overhead work tasks. The purpose of the study was to determine whether cycle time affected the progression of fatigue at the shoulder since the postural load during overhead tasks is inherently fatiguing. Ten university aged females performed a task rotation between an intermittent overhead pressing task and a neutrally located assembly task. Four conditions were defined by cycle time (15s, 30s, 60s and 120s) and each cycle consisted of one complete rotation. In order to quantify the progression of fatigue over time, four dependant measures were systematically collected for all conditions until exhaustion or to a maximum of three hours. These included root mean square (RMS) amplitude and median power frequency (MdPF) calculated from surface electromyography of nine muscles surrounding the shoulder, static strength capability, and rating of perceived exertion. Endurance time was also included as a fifth measure of fatigue. Linear regression was used to determine the slope of static strength and perceived exertion over time, and magnitude changes over normalized time were calculated for EMG measures. For all dependant measures, repeated measures ANOVA were used to identify significant differences across conditions. As the only independent factor investigated, cycle time influenced two out of the five dependent measures. Conditions induced differences in endurance time (F[3,24]=3.96, p=0.02) and RMS amplitude of the middle (F[24,189]=3.10, p<0.0001) and posterior deltoid (F[24,189]=2.52, p=0.0003). Performing overhead work in long cycles (120s) induced a shorter average endurance time (118.67min), and the shortest cycle time (15s) resulted in a longer average endurance time (152.44min). Over time, the rate of increase in RMS amplitude of both deltoid muscles was higher when working at the longest cycle time (120s). Although six muscles showed an indication of fatigue through significant decreases in MdPF in at least one condition, cycle time did not affect MdPF over time for any muscle examined. Similarly, the rate of static strength capability and rating of perceived exertion over time were not affected by cycle time. Two of five measures indicated that cycle time played a significant role in fatigue progression, making its effectiveness as a work organizational method for overhead work tasks unclear. Results indicate that that intermittent overhead work should be performed in shorter cycles to reduce the risk of shoulder injury. Identifying additional effects of cycle time on fatigue measures through increasing statistical power would provide ergonomists with more confidence in recommending this organizational strategy to mitigate the risk of musculoskeletal injury.
5

Dynamic Control of Serial-batch Processing Systems

Cerekci, Abdullah 14 January 2010 (has links)
This research explores how near-future information can be used to strategically control a batch processor in a serial-batch processor system setting. Specifically, improved control is attempted by using the upstream serial processor to provide near-future arrival information to the batch processor and further meet the re-sequencing requests to shorten critical products? arrival times to the batch processor. The objective of the research is to reduce mean cycle time and mean tardiness of the products being processed by the serial-batch processor system. This research first examines how mean cycle time performance of the batch processor can be improved by an upstream re-sequencing approach. A control strategy is developed by combining a look-ahead control approach with an upstream re-sequencing approach and is then compared with benchmark strategies through simulation. The experimental results indicate that the new control strategy effectively improves mean cycle time performance of the serial-batch processor system, especially when the number of product types is large and batch processor traffic intensity is low or medium. These conditions are often observed in typical semiconductor manufacturing environments. Next, the use of near-future information and an upstream re-sequencing approach is investigated for improving the mean tardiness performance of the serial-batch processor system. Two control strategies are devised and compared with the benchmark strategies through simulation. The experimental results show that the proposed control strategies improve the mean tardiness performance of the serial-batch processor system. Finally, the look-ahead control approaches that focus on mean cycle time and mean tardiness performances of the serial-batch processor system are embedded under a new control strategy that focuses on both performance measures simultaneously. It is demonstrated that look-ahead batching can be effectively used as a tool for controlling batch processors when multiple performance measures exist.
6

Stratospheric and tropospheric signals extracted using the empirical mode decomposition method /

Coughlin, Kathleen T. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 79-98).
7

Resolving the influence of work sequencing which includes overhead work: implications for job cycle designs

Meszaros, Kimberly January 2013 (has links)
Many industrial workplaces involve tasks that require work to be performed in overhead postures. Epidemiological evidence suggests that working in these unavoidable, awkward postures leads to development of shoulder fatigue, pain and several musculoskeletal disorders. The accumulation of localized muscle fatigue has been strongly associated with the development of work-related musculoskeletal injuries (Armstrong et al., 1993). In order to prevent injury, minimizing muscular fatigue during short-cycled, repetitive work through different work organization schemes has been suggested (Dempsey et al., 2010). Previous research has examined the interactive effect of altering contraction level, duty cycle and cycle times on shoulder muscle fatigue. However, isolation of one factor while maintaining a constant workload has not been examined for overhead work tasks. The purpose of the study was to determine whether cycle time affected the progression of fatigue at the shoulder since the postural load during overhead tasks is inherently fatiguing. Ten university aged females performed a task rotation between an intermittent overhead pressing task and a neutrally located assembly task. Four conditions were defined by cycle time (15s, 30s, 60s and 120s) and each cycle consisted of one complete rotation. In order to quantify the progression of fatigue over time, four dependant measures were systematically collected for all conditions until exhaustion or to a maximum of three hours. These included root mean square (RMS) amplitude and median power frequency (MdPF) calculated from surface electromyography of nine muscles surrounding the shoulder, static strength capability, and rating of perceived exertion. Endurance time was also included as a fifth measure of fatigue. Linear regression was used to determine the slope of static strength and perceived exertion over time, and magnitude changes over normalized time were calculated for EMG measures. For all dependant measures, repeated measures ANOVA were used to identify significant differences across conditions. As the only independent factor investigated, cycle time influenced two out of the five dependent measures. Conditions induced differences in endurance time (F[3,24]=3.96, p=0.02) and RMS amplitude of the middle (F[24,189]=3.10, p<0.0001) and posterior deltoid (F[24,189]=2.52, p=0.0003). Performing overhead work in long cycles (120s) induced a shorter average endurance time (118.67min), and the shortest cycle time (15s) resulted in a longer average endurance time (152.44min). Over time, the rate of increase in RMS amplitude of both deltoid muscles was higher when working at the longest cycle time (120s). Although six muscles showed an indication of fatigue through significant decreases in MdPF in at least one condition, cycle time did not affect MdPF over time for any muscle examined. Similarly, the rate of static strength capability and rating of perceived exertion over time were not affected by cycle time. Two of five measures indicated that cycle time played a significant role in fatigue progression, making its effectiveness as a work organizational method for overhead work tasks unclear. Results indicate that that intermittent overhead work should be performed in shorter cycles to reduce the risk of shoulder injury. Identifying additional effects of cycle time on fatigue measures through increasing statistical power would provide ergonomists with more confidence in recommending this organizational strategy to mitigate the risk of musculoskeletal injury.
8

Određivanje parametara korelacije izbora aktuatora i vremena ciklusa proizvodnje / Determining the parameters of correlation election of actuator and production cycle time

Oros Dragana 26 December 2014 (has links)
<p>Istraživanja u okviru ove disertacije su usmerena ka određivanju parametara korelacije izbora aktuatora i vremena ciklusa proizvodnje. Dobijeni parametri se koriste kao ulazni elementi metode koja će biti implementirana u softverski paket. Verifikacija predložene metode je izvršena na studijama slučajeva: IML robota i manipulatora za mašinu za termoformiranje, koje predstavljaju odgovarajuće primere uređaja u koje se ugrađuju svi tipovi aktuatora.</p> / <p>Research within this thesis are focused on determining the parameters of correlation election of an actuator and a production cycle time. The resulting parameters are used for the development of appropriate methods that will be implemented in the software package. Verification of the proposed method is performed on case studies: IML robots and manipulators for thermoforming machine, which are appropriate examples of devices that incorporate all types of actuators.</p>
9

Aspects of the choice of sampling frequency in the control system of a gas turbine

Öijerholm, Mikael January 2009 (has links)
<p>At Siemens, plcs are used to control the gas turbines, and to execute the code in the plcs cyclic interrupts are used. If the execution time for the interrupt becomes close to the cyclic time of the interrupt the load of the plc increases. High load levels can lead to situations were segments of code are not executed on time or even not executed at all. In this thesis an analysis of the regulators used to govern a gas turbine has been performed. The purpose of the analysis is to study the performance of the regulators for different cycle times with the aim to be able to reduce the load by sampling more slowly.</p><p>To determine the load contribution from each regulator a review of the regulators and their execution times has been made. For the analysis the Matlab program Simulink has been used to make models of the regulators, which have then been sampled at different rates. With this information it is possible to determine for which cycle times each regulator has accepetable performance and how much load each regulator contributes with. A save of load of approximately 2 percent can be obtained without loosing too much performance.</p>
10

Aspects of the choice of sampling frequency in the control system of a gas turbine

Öijerholm, Mikael January 2009 (has links)
At Siemens, plcs are used to control the gas turbines, and to execute the code in the plcs cyclic interrupts are used. If the execution time for the interrupt becomes close to the cyclic time of the interrupt the load of the plc increases. High load levels can lead to situations were segments of code are not executed on time or even not executed at all. In this thesis an analysis of the regulators used to govern a gas turbine has been performed. The purpose of the analysis is to study the performance of the regulators for different cycle times with the aim to be able to reduce the load by sampling more slowly. To determine the load contribution from each regulator a review of the regulators and their execution times has been made. For the analysis the Matlab program Simulink has been used to make models of the regulators, which have then been sampled at different rates. With this information it is possible to determine for which cycle times each regulator has accepetable performance and how much load each regulator contributes with. A save of load of approximately 2 percent can be obtained without loosing too much performance.

Page generated in 0.0488 seconds